K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2021

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

17 tháng 3 2018

Chọn B.

30 tháng 12 2015

tick rồi mk giải chi tiết cho

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có: \(\overrightarrow {AB}  = \left( {4;1} \right),\overrightarrow {AC}  = \left( {3;3} \right),\overrightarrow {BC}  = \left( { - 1;2} \right)\)

+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB}  = \left( {4;1} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {1; - 4} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AB là:

\(\left( {x - 1} \right) - 4\left( {y - 1} \right) = 0 \Leftrightarrow x - 4y + 3 = 0\)

Độ dài đường cao kẻ từ C chính là khoảng cách từ điểm C  đến đường thẳng AB

\(d\left( {C,AB} \right) = \frac{{\left| {4 - 4.4 + 3} \right|}}{{\sqrt {{1^2} + {4^2}} }} = \frac{{9\sqrt {17} }}{{17}}\)

+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC}  = \left( { - 1;2} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {2;1} \right)\) và đi qua điểm \(B(5;2)\), suy ra ta có phương trình tổng quát của đường thẳng BC là:

\(2\left( {x - 5} \right) + \left( {y - 2} \right) = 0 \Leftrightarrow 2x + y - 12 = 0\)

Độ dài đường cao kẻ từ A chính là khoảng cách từ điểm A  đến đường thẳng BC

\(d\left( {A,BC} \right) = \frac{{\left| {2.1 + 1 - 12} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{{9\sqrt 5 }}{5}\)

+) Đường thẳng AC  nhận vectơ \(\overrightarrow {AC}  = \left( {3;3} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_3}}  = \left( {1; - 1} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AC  là:

\(\left( {x - 1} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow x - y = 0\)

Độ dài đường cao kẻ từ B chính là khoảng cách từ điểm B  đến đường thẳng AC

\(d\left( {B,AC} \right) = \frac{{\left| {5 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{3\sqrt 2 }}{2}\)

31 tháng 12 2015

tui mới lớp 6 òi nha

si
 

31 tháng 12 2015

tick cho tui tròn 140 đi mà