K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2021

\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)

Áp dụng bất đẳng thức Cosi ta có:

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)

\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)

Dấu = xảy ra khi x=4

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

3 tháng 4 2020

Trần Thùy Linh Duong Le Nguyễn Lê Phước Thịnh Nguyễn Văn Đạt

\(ĐKXĐ:x\ne9,x\ge0\)

Ta có : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3}{\sqrt{x}+3}\)

Ta thấy : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3>0\)

\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)

Hay : \(A\le1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy GTLN của \(A=1\) khi \(x=0\)

NV
18 tháng 9 2019

\(C=\frac{x-1+9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)

Áp dụng BĐT Cauchy:

\(C\ge2\sqrt{\frac{\left(\sqrt{x}+1\right).9}{\sqrt{x}+1}}-2=4\)

\(\Rightarrow C_{min}=4\) khi \(\left(\sqrt{x}+1\right)^2=9\Rightarrow x=4\)

26 tháng 7 2018

A = \(\frac{1+x}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{3}\)=\(\frac{1+x}{3\sqrt{x}}\)

ĐKXĐ : x > 0

8 tháng 9 2017

I don't know! :))

25 tháng 7 2018

ĐKXĐ: \(x\ge0\)

\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2}{x-\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)