A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
a, tìm các giá trị của x để A<1
b, tìm các giá trị nhỏ nhất của biểu thức A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A= \(\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)=\(\frac{2x-2\sqrt{x}-\sqrt{x}+1}{x-1}=\frac{2\sqrt{x}-1}{x+1}\)
Để A=1/2 thì
\(\frac{2\sqrt{x}-1}{x+1}=\frac{1}{2}\)
nhân chéo ta đc pt \(x-4\sqrt{x}+3=0\)
giải pt ta đc x=1 (loại) hoặc x= 9
vậy x=9 TM
Để A<1 thì \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\Leftrightarrow\sqrt{x}< 2\)
=> x<4
vậy vs 0\(\le x< 4\) và x khác 1 TM
Mình nghĩ thế này ạ
a) Với \(x\ge0,x\ne1\)ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1x}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Kết luận :
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)\(\div\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)
\(A=\frac{2x+1}{4\sqrt{x}}\)
c, \(A=\frac{2x+1}{4\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\)
ap dụng cô si ta có \(\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{4\sqrt{x}}}=\frac{\sqrt{2}}{2}\)
dấu = xảy ra khi \(\frac{\sqrt{x}}{2}=\frac{1}{4\sqrt{x}}\Leftrightarrow x=\frac{1}{2}\) (tm)
rối quá chẵn hiểu gì cả
Quy đồng lên.... rồi giảm đi... bài này dễ mà...
câu b phân tích tử theo mẫu để đưa về ptr cơ bản.