K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm x thuộc N để x^2+5 là số chính phương
Đặt x^2+5=k^2(mttq giả sử k nguyên)
=>x^2-k^2=5
=>(x-k)(x+k)=5.
x+k>x-k>0 và 5=1.5
=>x-k=1,x+k=5=>x=3(thỏa)

26 tháng 3 2019

Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)

\(\Leftrightarrow x^2+2x+1+19=a^2\)

\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)

\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)

\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)

Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)

Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)

Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương

15 tháng 3 2016

bạn tự nghĩ đi

Tra loi

Bn len google tra cho nhanh

Mk ns tht day

Hok tot Hien​​​​​