Cho x,y thuộc Q. Chứng minh rằng -(x+y)=-x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+y}{\frac{x-x-y}{y}}=\frac{\left(x+y\right)y}{x-x-y}=\frac{\left(x+y\right)y}{-y}=-x-y\)
Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên
Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1
Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)
\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e
Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)
nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)
+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\) mà \(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1
+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1
Như vậy điều giả sử là sai
=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)
a, Với mọi \(x;y\inℚ\)ta có :
\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)
\(\Rightarrow x+y\le|x|+|y|\)
\(-x-y\le|x|+|y|\)
\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)
\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)
Vậy \(|x+y|\le|x|+|y|\)
Dấu "=" xảy ra khi xy \(\ge\) 0.
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
Dùng phương pháp bỏ ngoặc ờ tiểu học
Nếu đằng trc ngoặc có dấu "-" thì đổi các dấu trong ngoặc ta có:
-(x+y)=-x-y=VP