Cho tam giác ABC cân tại A. Lấy D ∈ AB, M ∈ BC, E ∈ AC sao cho góc DME bằng góc ABC.
a) Chứng minh góc BDM = góc CME
b, Chứng minh Δ BDM đồng dạng với Δ CME và viết các tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{MB}{EC}=\frac{DB}{MC}\)
\(\Leftrightarrow MB.MC=EC.DB\)
Mà tg ABC cân tại A => MC = MB
=> \(BM^2=BD.CE\)(đpcm)
b) Xét tg MDE và BDM
\(\widehat{MDE}=\widehat{BDM}\)(gt)
\(\widehat{MDB}=\widehat{EDM}\)(gt)
\(\Rightarrow\Delta MDE~\Delta BDM\)
a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) \(\widehat{BMD}=\widehat{MEC}\)( \(\Delta DBM\)và \(\Delta MCE\)đồng dạng)
Mà BME là góc ngoài tam giác MEC
=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)
\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)
Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)
Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)
Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)
a: Ta có: \(\widehat{DME}=\widehat{B}\)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: \(\widehat{DME}=\widehat{C}\)
Ta có: \(\widehat{EMC}+\widehat{C}+\widehat{MEC}=180^0\)
\(\widehat{EMC}+\widehat{DME}+\widehat{DMB}=180^0\)
mà \(\widehat{C}=\widehat{DME}\)
nên \(\widehat{MEC}=\widehat{DMB}\)
Xét ΔMEC và ΔDMB có
\(\widehat{MEC}=\widehat{DMB}\)
\(\widehat{C}=\widehat{B}\)
Do đó: ΔMEC~ΔDMB
c: Ta có: ΔBMD~ΔCEM
=>\(\dfrac{MB}{EC}=\dfrac{BD}{MC}\)
=>\(BD\cdot EC=MB\cdot MC=MB^2\)
Hình thì chú tự vẽ nhé, anh đây mệt lắm.
Xét góc BMC có:
góc DMB + góc EMC = 180 độ - góc DME (1)
Xét tam giác BDM có:
góc BDM + góc DMB = 180 độ - góc B (2)
Mà góc B = góc DME (3)
Từ (1), (2), (3) => góc EMC = góc BDM
Xét tam giác BDM và tam giác CME có:
góc EMC = góc BDM (cmt)
góc B = góc C (tam giác ABC cân tại A)
=>tam giác BDM~tam giác CME (g - g)
1)
∆BDM có BDM + DBM + BMD = 180°
BMD + DME + CME = 180°
DME = DBM
Nên BDM = CME
2) ∆BMD ~ ∆CEM (g.g)
Ta có: tam giác ABC cân tại A
=>^B=^C
Mà ^B=^DME
Suy ra: ^C=^DME
Mặt khác: ^BME=^BMD+^DME=^MEC+^C(góc ngoài của tam giác MEC)
Suy ra: ^BMD=^MEC
Xét tam giác BMD và tam giác CEM có:
^B=^C(gt)
^BMD=^MEC(cmt)
Do đó: ΔBMD~ΔCEM(g.g)
Suy ra: BMCE =BDCM ⇔BM·CM=CE·BD
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi