Phương trình tham số của đường thẳng qua M(1;-2) , N(4;3) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng có
Đường thẳng cần tìm có và đi qua điểm M( -2; 3) nên có phương trình tham số là .
Chọn A.
a: vecto AC=(4;-4)=(1;-1)
Phương trìh tham số là:
x=-1+t và y=2-t
b: Tọa độ N là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{2-2}{2}=0\end{matrix}\right.\)
N(1;0); B(-2;-1)
vecto BN=(3;1)
Phương trình tham số là:
x=1+3t và y=0+t=t
c: vecto BC=(5;-1)
=>vecto AH=(1;5)
Phương trình tham số AH là:
x=-1+t và y=2+5t
Do 2 đường thẳng d và d’ vuông góc với nhau nên d có véc tơ chỉ phương
.
Mà d đi qua điểm M( -2; 3) nên d có phương trình tham số là:
Chọn B.
\(\left\{{}\begin{matrix}VTCP\left(3;5\right)\\M\left(1;-2\right)\end{matrix}\right.\)
VTTS \(\left\{{}\begin{matrix}x=1+3t\\y=-2+5t\end{matrix}\right.\)
Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }} = \overrightarrow {{n_d}} = \left( {3; - 4} \right)\).
Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:
\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).
\(\overrightarrow{MN}\left(3;5\right)\)
Vì (d) nhận vecto MN là vecto chỉ phương và đi qua điểm M(1;-2) nên phương trình tham số là:
\(\left\{{}\begin{matrix}x=1+3t\\y=-2+5t\end{matrix}\right.\)