K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

....Có ở trong sách bài tập toán 7 (tập II) mà bn......:))

7 tháng 4 2017

Xét \(\Delta\) ADB có :

AD < AB + BD ( Bất đẳng thức tam giác )

Xét \(\Delta\)ADC có :

AD < AC + CD ( Bất đẳng thức tam giác )

Cộng hai vế của đẳng thức lại với nhau,ta có :

2AD < AB + BD + AC + CD

=> 2AD < AB + AC +(BD + CD)

=> 2AD < AB + AC + BC

hay AD < \(\dfrac{AB+AC+BC}{2}\)(nửa chu vi tam giác ABC) ( đpcm)

19 tháng 9 2018

Trong ΔABD, ta có:

AD < AB + BD (bất đẳng thức tam giác) (1)

Trong ΔADC, ta có:

AD < AC + DC (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2), ta có:

2AD < AB + BD + AC + DC ⇔ 2AD < AB + AC + BC

Vậy AD < (AB + AC + BC) / 2 .

19 tháng 9 2023

Áp dụng quan hệ giữa ba cạnh của tam giác ABD, ta có: AD < AB + BD

Áp dụng quan hệ giữa ba cạnh của tam giác ACD, ta có: AD < CD + AC

\(\Rightarrow AD + AD < AB+BD+CD+AC\)

\(\Rightarrow 2AD<AB+BC+AC\) ( vì \(DB+DC=BC\))

\(\Rightarrow\) 2AD < Chu vi tam giác ABC hay AD < (Chu vi tam giác ABC) : 2

Vậy AD nhỏ hơn nửa chu vi tam giác ABC.

XétΔABD có AD<AB+BD(1)

Xét ΔACD có AD<AC+CD(2)

Từ (1) và (2) suy ra \(2AD< AB+AC+BC\)

hay \(AD< \dfrac{AB+AC+BC}{2}=\dfrac{C_{ABC}}{2}\)

31 tháng 3 2016

Xét tam giác ABD và tam giác ACDcó AB+BD>AD vàAC+CD>AD(BĐT tam giác ABD và ACD)

Cộng 2 vế lại với nhau ta được:

AB+AC+BD+CD>2AD

=>AB+AC+BC>2AD

Mà AB+AC+BC là chu vi của tam giác ABC

=>1/2(AB+AC+BC)>AD

Vậy nửa chu vi của tam giác ABC>AD

9 tháng 3 2019

Bài 1 :

Vì tam giác đó cân 

=> 

  • Có 2 cạnh là 4m
  • Có 2 cạnh là 9m

Mà theo bất đẳng thức tam giác , độ dài 1 cạnh bao nhờ cũng nhỏ hơn tổng độ dài 2 cạnh còn lại

=> Tam giác đó có 2 cạnh bằng 9m .

Chu vi tam giác đó là :

9 + 9 + 4 = 22 ( m)

Đáp số : 22m