K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

1: S=8⋅62=24(cm2)S=8⋅62=24(cm2)

2: Xét ΔABC vuông tại A có AH là đường cao

nên AC2=HC⋅BCAC2=HC⋅BC

3: Xét ΔAHB vuông tại H có HM là đường cao

nên AM⋅AB=AH2(1)AM⋅AB=AH2(1)

Xét ΔAHC vuông tại H có HN là đường cao

nên AN⋅AC=AH2(2)AN⋅AC=AH2(2)

Từ (1) và (2) suy ra AM⋅AB=AN⋅ACAM⋅AB=AN⋅AC

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

Mọi người ơi giúp mình với,mình sắp phải nộp bài rồi.Mong mọi người giúp đỡ ạ.

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB

12 tháng 3 2022

help me

 

12 tháng 3 2022

a)Áp dụng định lí Py-ta-go vào tam giác AHB ta được:

HB2+HA2=AB2 

\(\Rightarrow\) 32+42=AB2

\(\Rightarrow\) 9+16 =AB2

\(\Rightarrow\)\(\sqrt{AB}\) =25

\(\Rightarrow\)AB =5

b) tam giác AKH có AI vuông góc với KH(gt) , IH=IK(gt)

\(\Rightarrow\) AI vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\) tam giác AKH cân tại A

16 tháng 3 2022

nhanh giúp mình với đang cần gấp

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

14 tháng 3 2023

a. Xét tam giác HAC và tam giác ABC, có:

\(\widehat{C}\) : chung

\(\widehat{AHC}=\widehat{BAC}=90^o\)

Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )

b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)

Áp dụng định lý pytago tam giác ABC, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

c. Tam giác AHB có phân giác AD:

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2) 

(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAHM=ΔAHN

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

hay AH⊥MN

8 tháng 4 2022

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

cạnh AH chung

AB=AC(vì tam giác ABC cân tại A)

=> ΔAHB=ΔAHC(c.h-c.g.v)

 Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

\(\widehat{HAM}=\widehat{HAN}\)

cạnh AH chung

==> ΔAHM=ΔAHN(c.h-g.n)

==> AM=AN

=> ΔAMN cân tại A ( dấu hiệu)

 

c)Ta có:HM=HN   ;  AM=AN

===>AH là đường trung trực của MN

=>\(\text{AH⊥MN}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi