Cho C=1/2+[1/2]^2+[1/2]^3+[1/4]^4+....+[1/2]^98+[1/2]^99
CMR C<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{99}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
Ta có : \(\frac{1}{2}< \frac{1}{1};\frac{1}{2^2}< \frac{1}{1\cdot2};.....;\frac{1}{2^{99}}< \frac{1}{98\cdot99}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}=1+1-\frac{1}{99}=2-\frac{1}{99}\)
Mk nghĩ đề có chút sai , mk làm đến đây là đc r , thông cảm nha bạn
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(2B-B=1+\frac{1}{2}+...+\frac{1}{2^{98}}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(B=1-\frac{1}{2^{99}}< 1\)
Bài 1::
a) 32<2n<128
=>25<2n<27
=>n=6
Bài 2:Ta có :
A = 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99
=> 1/2A = (1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100
1/2B- A = [(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100] - [ 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99]
-1/2A = [(1-2)2-(1/2)2]+[(1/2)3-(1/2)3]+...+[(1/2)98-(1/2)98]+[(1/2)99-(1/2)99]+[(1/2)100+(1/2)100-(1/2)99] -1/2
-1/2A = 0+0+...+0+0+0-1/2
-1/2A = -1/2
=> A = 1
\(C=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}\)
\(2C=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}\)
\(2C-C=C=1-\left(\frac{1}{2}\right)^{99}< 1\left(đpcm\right)\)
C = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/298 + 1/299
2C = 1 + 1/2 + 1/22 + 1/23 + ... + 1/297 + 1/298
2C - C = (1 + 1/2 + 1/22 + 1/23 + ... + 1/297 + 1/298) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/298 + 1/299)
C = 1 - 1/299 < 1 (đpcm)