K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}\)

\(2C=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}\)

\(2C-C=C=1-\left(\frac{1}{2}\right)^{99}< 1\left(đpcm\right)\)

19 tháng 6 2016

C = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/298 + 1/299

2C = 1 + 1/2 + 1/22 + 1/23 + ... + 1/297 + 1/298

2C - C = (1 + 1/2 + 1/22 + 1/23 + ... + 1/297 + 1/298) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/298 + 1/299)

C = 1 - 1/299 < 1 (đpcm)

2 tháng 3 2017

??????????????????????????????????????????????

2 tháng 3 2017

Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!

18 tháng 7 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{99}\)

    \(=\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

      Ta có :  \(\frac{1}{2}< \frac{1}{1};\frac{1}{2^2}< \frac{1}{1\cdot2};.....;\frac{1}{2^{99}}< \frac{1}{98\cdot99}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}\)

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}=1+1-\frac{1}{99}=2-\frac{1}{99}\)

Mk nghĩ đề có chút sai , mk làm đến đây là đc r , thông cảm nha bạn 

18 tháng 7 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+...+\frac{1}{2^{98}}\)

\(2B-B=1+\frac{1}{2}+...+\frac{1}{2^{98}}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

\(B=1-\frac{1}{2^{99}}< 1\)

9 tháng 9 2016

Bài 1::

a) 32<2n<128

=>25<2n<27

=>n=6

Bài 2:Ta có :

          A = 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99

 => 1/2A = (1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100

 1/2B- A = [(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100] - [ 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99]

     -1/2A = [(1-2)2-(1/2)2]+[(1/2)3-(1/2)3]+...+[(1/2)98-(1/2)98]+[(1/2)99-(1/2)99]+[(1/2)100+(1/2)100-(1/2)99] -1/2

     -1/2A = 0+0+...+0+0+0-1/2

     -1/2A = -1/2

=>       A = 1