K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

a: Xét tứ giác AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình chữ nhật

b: Vì M đối xứng với N qua AB

nên ABvuông góc với MN tại E và E là trung điểm của MN

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

nên AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

c: Xét tứ giác ANMC có

NM//AC

NM=AC

Do đó: ANMC là hình bình hành

=>AM cắt CN tại trung điểm của mỗi đường

=>C,O,N thẳng hàg

a: XétΔBEM vuông tại E và ΔCFM vuông tại F có

BM=CM

góc B=góc C

=>ΔBEM=ΔCFM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD

=>DB=DC

=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng

31 tháng 3 2017

Bạn tự vẽ hình nhé

Xét các tam giác vuông AKM và tam giác vuông CHN có

AM=NC ( bằng 1 nửa đoạn AB=AC)

Góc MAK= góc NCH ( cùng phụ với AMC)

=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)

=> AK=HC ( 2 cạnh tương ứng)

Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)

Có N là trung điểm của cạnh AC (2)

Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\) 

=>H là trung điểm của KC

b) Theo câu a, ta có AK=HC và KH=HC

=>AK=HC

=> AK2+KH2=AH2

=>2.AK2=16

=>AK2=8

=>AK=KH=\(\sqrt{8}\)

=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)

Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2

=>AC2=8+32=40

=>\(AC=AB=\sqrt{40}\)

Diện tích tam giác ABC là

\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2

Câu c hình như sai đề

1 tháng 4 2017

Theo cau a ta co:

goc BAK = gocACH va AK = CH

Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )

Suy ra goc DKA = goc AHC

Ma tam giac AKH vuong tai A

Suy ra goc AHK = 45 do 

Suy ra goc AHC = 135 do ( ke bu )

Hay goc AKB = 135 do

Ta co goc AKH = 90 do Suy ra goc BKH = 135 do

Hay AKB = 135 do

Ta lai co goc AKH = 90 do Suy ra BKH = 35 do 

Suy ra tam giac BKA = tam gic BKM

goc BHK = goc BAK

Do HE ||  AC ( cung vuong goc AB )

Suy ra goc EHM = goc ACH Va goc BAK = goc ACH

Suy ra BHK = MHE

HM la tia phan giac goc EHB

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng