K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

MP=(AD+BC)/2=20cm

NQ=(AB+CD)/2=20cm

S MNPQ=1/2*20*20=200cm2

10 tháng 12 2016

tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm

QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm

Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm

11 tháng 12 2016

Bạn ơi lẽ ra chỗ diện tích hcn là phải bằng = 3 . 4 = 12cm chứ nhỉ bạn

22 tháng 2 2018

A M B D Q N C P

a) \(\Delta ABC\)có : 

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của \(\Delta ABC\)

=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)

CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)

=> MN // PQ ; MN = PQ .

=> Tứ giác MNPQ là hình bình hành .

b) Theo câu a) , Ta có : 

MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)

+) Hình bình hành MNPQ là hình thoi 

=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\)

=> ABCD là hình thang cân .

+) Hình bình hành MNPQ là hình chữ nhật 

\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD ) 

=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .

+) Hình bình hành MNPQ là hình vuông 

\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)

=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .