Giải phương trình :
\(\sqrt{3x+2}-2\sqrt{x}=2-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt {x + 2} = x\)
Điều kiện: \(x \ge 0\)
Bình phương 2 vế của phương trình ta được:
\(x + 2 = {x^2} \Leftrightarrow {x^2} - x - 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
b) \(\sqrt {2{x^2} + 3x - 2} = \sqrt {{x^2} + x + 6} \)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 2 = {x^2} + x + 6\\ \Leftrightarrow {x^2} + 2x - 8 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array}\)
Thay vào bất phương trình \(2{x^2} + 3x - 2 \ge 0\) ta thấy cả 2 nghiệm đều thỏa mãn.
Vậy tập nghiệm là \(S = \left\{ { - 4;2} \right\}\)
c) \(\sqrt {2{x^2} + 3x - 1} = x + 3\)
Điều kiện: \(x + 3 \ge 0 \Leftrightarrow x \ge - 3\)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 1 = {\left( {x + 3} \right)^2}\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( {tm} \right)\\x = 5\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm là \(S = \left\{ { - 2;5} \right\}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(đk:2\le x\le4\) \(pt\Leftrightarrow\sqrt{x-2}+\sqrt{4-x}=x-2\sqrt{3x}+5\)
\(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le2\left(x-2+4-x\right)=4\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
\(x-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+5=\sqrt{x}^2-2\sqrt{3x}+3+2=\left(\sqrt{x}-\sqrt{3}\right)^2+2\ge2\)
\(\Rightarrow\left\{{}\begin{matrix}VT\le2\\VP\ge2\end{matrix}\right.\) dấu"=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{4-x}=2\\\left(\sqrt{x}-\sqrt{3}\right)^2+2=2\end{matrix}\right.\)
\(\Leftrightarrow x=3\left(tm\right)\)
(ủa đề sai chỗ nào ta?)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
=>\(\dfrac{x^2-3x+6-x^2+3x-3}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)
=>căn x^2-3x+6 - căn x^2-3x+3=1
Đặt x^2-3x+3=a
=>căn a+3-căn a=1
=>a+3+a-2căn a(a+3)=1
=>2căn a(a+3)=2a+3-1=2a+2
=>căn a(a+3)=a+1
=>a^2+3a=a^2+2a+1
=>a=1
=>x^2-3x+2=0
=>x=1 hoặc x=2
\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow ab+3=3a+b\\ \Leftrightarrow3a-3+b-ab=0\\ \Leftrightarrow3\left(a-1\right)-b\left(a-1\right)=0\\ \Leftrightarrow\left(3-b\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow x-1=1\Rightarrow x=2\left(tm\right)\\b=3\Rightarrow x-2=9\Rightarrow x=11\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{2;11\right\}\)
đk : x >= 0
\(\Leftrightarrow x-2\sqrt{x}-2+\sqrt{3x+2}=0\)
\(\Leftrightarrow x-2-\left(2\sqrt{x}-2\sqrt{2}\right)+\sqrt{3x+2}-2\sqrt{2}=0\)
\(\Leftrightarrow x-2-\frac{4x-8}{2\sqrt{x}+2\sqrt{2}}+\frac{3x+2-8}{\sqrt{3x+2}+2\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[1-\frac{4}{2\sqrt{x}+2\sqrt{2}}+\frac{3}{\sqrt{3x+2}+2\sqrt{2}}\right]=0\Leftrightarrow x=2\)(tmđk)