K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2022

a.

\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp

Phương trình tham số AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(4;-7\right)\) \(\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp

Phương trình AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)

NV
4 tháng 3 2022

a. 

\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp

Phương trình tham số của AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(4;-7\right)\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp

Phương trình tham số AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)

a: (d): y=ax+b

Theo đề, ta có hệ:

a+b=3 và 2a+b=4

=>a=1 và b=2

b: Theo đề, ta có hệ:

-3a+b=2 và 2a+b=3

=>a=1/5 và b=13/5

1 tháng 12 2021

\(a,\text{Gọi đt cần tìm là }\left(d\right):y=ax+b\\ \text{Theo đề ta có: }\left\{{}\begin{matrix}a=2;b\ne-3\\\dfrac{1}{3}a+b=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=2x+\dfrac{2}{3}\\ b,\text{Gọi đt cần tìm là }\left(d'\right):y=ax+b\\ B\left(\dfrac{2}{3};0\right)\text{ và }A\left(0;3\right)\in\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{9}{2}\\b=3\end{matrix}\right.\\ \Leftrightarrow\left(d'\right):y=-\dfrac{9}{2}x+3\)

a: (d)//(d1)

=>(d): y=-2x+b

Thay x=2 và y=-3 vào (d), ta được:

b-4=-3

=>b=1

b: Vì (d) vuông góc (d2)

nên (d): y=x+b

Thay x=-1 và y=-2 vào (d), ta được:

b-1=-2

=>b=-1

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)

28 tháng 2 2021

Ta có :

\(\overrightarrow{AB}\) = (-3;-4)

\(\Rightarrow\overrightarrow{n}=\left(4;-3\right)\)  là vectơ pháp tuyến của đường thẳng AB

Vậy phương trình đường thẳng AB là :

4x - 3(y-4) = 0

hay 4x - 3y = -4

Câu b tương tự

 

 

(d): 2y+1=x

=>2y=x-1

=>y=1/2x-1/2

a: Gọi (d1): y=ax+b là phương trình đường thẳng AB

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)

c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm

Vì (d2) có hệ số góc là 5 nên a=5

Vậy: (d2): y=5x+b

Thay x=1 và y=3 vào (d2), ta được:

b+5=3

hay b=-2

d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm

Vì (d3)//(d) nên a=-1/2

Vậy: (d3): y=-1/2x+b

Thay x=1 và y=3 vào (d3), ta được;

b-1/2=3

hay b=7/2

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y =  - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)

b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b =  - 2a.\)

Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b =  - 1.\)

Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b =  - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b =  - 2}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)

c) Parabol có đỉnh \(I(1;4)\) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y =  - {x^2} + 2x + 3.\)