cho 4x+y=1 chứng minh rằng : 4x^2+y^2≥\(\dfrac{1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
\(4x^2+y^2=4x^2+\left(1-4x\right)^2=4x^2+1-8x+16x^2=20x^2-8x+1=20\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)\)
\(=20\left[x^2-\frac{2}{5}x+\frac{1}{25}+\frac{1}{100}\right]=20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{5}\)
BĐT$\Leftrightarrow 20x^2+5y^2\geq (4x+y)^2=16x^2+8xy+y^2\Leftrightarrow 2(x-y)^2\geq 0$ (đúng)
Dấu "=" xảy ra khi $x=y=\frac{1}{5}$
Có 4x2 + y2 = (2x)2 + y2
=> (4x2 + y2)(22 + 12) =( (2x)2 + y2) (22 + 12)
Áp dụng bất đẳng thức Bunhiakốpxki
=>( (2x)2 + y2) (22 + 12) >= (4x + y)2 = 1
=> (4x2 + y2)*5 >= 1
=> 4x2 + y2 >= 1/5
>= là lớn hơn hoặc bằng
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
suy ra:
4(3x−2y)16=3(2z−4x)9=2(4y−3z)44(3x−2y)16=3(2z−4x)9=2(4y−3z)4
=12x−8y+6z−12x+8y−6z29=0=12x−8y+6z−12x+8y−6z29=0
Vậy
3x−2y4=0⇒3x=2y⇒x2=y3(1)3x−2y4=0⇒3x=2y⇒x2=y3(1)
2z−4x4=
Bài này có 2 cách làm mình làm cách áp dụng BĐT Bunhiacopxki
Ta có 4x + y = 1 =) ( 4x + y)2 =1
=) (4x + y)2 = [ 2(2x) + y ]2 <= ( 22 +1 ) [ (2x)2 + y2 )
=) ( 4x + y )2 <= 5( 4x2 + y2 )
=) 1<= 5( 4x2 + y2 )
=) 1/5 <= 4x2 + y2
Hay 4x2 + y2 >= 1/5
K CHO MÌNH NHA
Bài 1:
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)
\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)
bài 1 mình thấy sao sao ý !!
đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà
Lời giải:
Ta có:
\(\frac{4x^2y^2}{(x^2+y^2)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\geq 3\)
\(\Leftrightarrow \frac{4x^2y^2}{(x^2+y^2)^2}-1+\frac{x^2}{y^2}+\frac{y^2}{x^2}-2\geq 0\)
\(\Leftrightarrow \frac{4x^2y^2-(x^2+y^2)^2}{(x^2+y^2)^2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\geq 0\)
\(\Leftrightarrow \frac{-(x^2-y^2)^2}{(x^2+y^2)^2}+\frac{(x^2-y^2)^2}{x^2y^2}\geq 0\)
\(\Leftrightarrow (x^2-y^2)^2\left(\frac{1}{x^2y^2}-\frac{1}{(x^2+y^2)^2}\right)\geq 0\)
\(\Leftrightarrow \frac{(x^2-y^2)^2(x^4+y^4+x^2y^2)}{x^2y^2(x^2+y^2)^2}\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $x=y$
\(A=\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
x,y khác 0
<=>\(A=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}\right)^2+\left(\dfrac{y}{x}\right)^2\)
\(A+2=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=m\)
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=t;t\ge4\)
\(m=\dfrac{4}{t}+t\Leftrightarrow t^2-mt+4=0\)
f(t) có nghiệm t>= 4<=>\(\left\{{}\begin{matrix}m^2-16\ge0\\\dfrac{m+\sqrt{m^2-16}}{2}\ge4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|m\right|\ge4\\m^2-16\ge m^2-16m+64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|m\right|\ge4\\m\ge5\end{matrix}\right.\) \(\Leftrightarrow A+2\ge5;A\ge3=>dpcm\)
\(4x+y=1\Rightarrow y=1-4x\)
\(\Rightarrow4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1=20\left(x-\dfrac{1}{5}\right)^2+\dfrac{1}{5}\ge\dfrac{1}{5}\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{5};\dfrac{1}{5}\right)\)