K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

4 tháng 5 2019

a) n ∈ Z và n ≠ –2

b) HS tự làm

c) n ∈ {-3;-1}

21 tháng 2 2015

Ta có : 3n+2 chia n-1 bằng 3 dư 5 .Để A là số nguyên thì n-1 phải là ước của 5 bao gồm : 1;-1;5;-5

n-1=1=>n=2

n-1=-1 =>n=0

n-1=5=>n=6

n-1=-5=>n=-4

Vậy n thuộc tập hợp bao gồm : -4;0;2;6

17 tháng 4 2016

vì sao dư 5

23 tháng 3 2016

De A co gia tri nguyen => 3n + 2 chia het n - 1

=> 3(n-1) + 5 chia het n - 1

Vi 3( n-1 ) chia het n - 1

=> 5 chia het n - 1

=> n - 1 thuoc uoc cua 5 ( chu y: Ca uoc duong va am)

........................................ Den day bn tu lam nhe!

...............................

23 tháng 3 2016

ta có A=3n+2/n-1

           =3(n-1)+5/n-1

           =3+5/n-1

để A thuộc Z suy ra 5/n-1 thuộc Z suy ra n-1 thuộc Ư(5)=(-1;1;-5;5)

ta có bảng

n-1-5-115
n-4026
A2-284

vậyn=-4;0;2;6 thì A thuộc Z

29 tháng 3 2021
Để A có số nguyên suy ra 3n+2:n-1 Suy ra 3(n-1)+5:n-1 Suy ra 5:(n-1) 5:n-1 suy ra n-1€Ư(5) Ta có bảng sau Còn đâu thì tự làm
27 tháng 3 2017

-Để A  có giá trị nguyên 
=> 3n+2 chia hết cho n-1
Mà 3n+2 chia hết cho n-1
      n-1 chia hết cho n-1 => 3(n-1) chia hết cho n-1
                                    => 3n-3 chia hết cho n-1
<=> (3n+2)-(3n-3) chia hết cho n-1
<=> 3n+2-3n+3 chia hết cho n-1
<=> 5 chia hết cho n-1
<=> n-1 thuộc Ư(5)={1;-1;5;-5}
<=> n = {2;0;6;-4}
Vậy n = {2;0;6;-4} thì A có giá trị nguyên.

Để `3n+4/n-1∈ZZ`

3n+4⋮n−13n+4⋮n-1

⇒(3n−3)+7⋮n−1⇒(3n-3)+7⋮n-1

⇒3(n−1)+7⋮n−1⇒3(n-1)+7⋮n-1

Vì 3(n−1)⋮n−13(n-1)⋮n-1

⇒7⋮n−1⇒7⋮n-1

⇒n−1∈Ư(7)={±1;±7}⇒n-1∈Ư(7)={±1;±7}

⇒n∈{0;2;−6;8}⇒n∈{0;2;-6;8}

Vậy 3n+4n−1∈Z3n+4n-1∈ℤ khi n∈{0;2;−6;8}

Giải:

Để \(A=\dfrac{3n+4}{n-1}\) là số nguyên thì \(3n+4⋮n-1\) 

\(3n+4⋮n-1\) 

\(\Rightarrow3n-3+7⋮n-1\)

\(\Rightarrow7⋮n-1\) 

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

n-1-7-117
n-6028

Vậy \(n\in\left\{-6;0;2;8\right\}\)

Chúc bạn học tốt!

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

:D

26 tháng 2 2017

Do A có giá trị nguyên

\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)

Mà  \(n-1⋮n-1\)

\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)

Xét \(n-1=-1\Rightarrow n=-4\)

\(n-1=-5\Rightarrow n=0\)

\(n-1=5\Rightarrow n=6\)

\(n-1=1\Rightarrow n=2\)

Vậy ...

26 tháng 2 2017

A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}

Ta có: n - 1 = 1 => n = 2

          n - 1 = -1 => n = 0

          n - 1 = 5 => n = 6

          n - 1 = -5 => n = -4

Vậy n = {2;0;6;-4}