K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

a, Thay m = 7 ta đc 

\(x^2-16x+48=0\Leftrightarrow x^2-16x+64-16=0\)

\(\Leftrightarrow\left(x-8\right)^2-16=0\Leftrightarrow\left(x-12\right)\left(x-4\right)=0\Leftrightarrow x=12;x=4\)

b, \(\Delta'=\left(m+1\right)^2-\left(m^2-1\right)=m^2+2m+1-m^2+1=2m+2\)

Để pt có nghiệm khi \(2m+2\ge0\Leftrightarrow m\ge-1\)

d, Để pt có 2 nghiệm đối nhau khi \(m^2-1< 0\Leftrightarrow m^2< 1\Leftrightarrow-1< m< 1\)

NV
4 tháng 3 2022

d. Phương trình có 2 nghiệm đối nhau khi:

\(x_1+x_2=0\)

\(\Leftrightarrow2\left(m+1\right)=0\)

\(\Leftrightarrow m=-1\)

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

24 tháng 2 2022

1, bạn tự giải

2, 

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 khi \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\left(luondung\right)\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=10\)

Thay vào ta được \(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6=10\Leftrightarrow4m^2-6m=0\)

\(\Leftrightarrow m\left(4m-6\right)=0\Leftrightarrow m=0;m=\dfrac{3}{2}\)

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
NV
22 tháng 4 2021

a. Bạn tự giải

b. Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)

c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)

 \(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)