Cho hai số hữu tỉ x = a/b và y= c/d
Chứng minh rằng:
a) \(x+y\) =\(\frac{ad+bc}{bd}\) b) \(x-y=\frac{ad-bc}{bd}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
1, 4x = 5y <=> 4x - 5y = 0 (1)
Mà: x -2y = -5 <=> 4x - 8y = -20 (2)
Trừ (1) cho (2) ta có: 4x - 5y - 4x + 8y = 0 - (-20)
<=> 3y = 20 <=> y = \(\frac{20}{3}\)
=> x =\(\frac{25}{3}\)
2, \(ad=bc\)\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(dpcm\right)\)
3, \(\frac{x^2}{6}=\frac{24}{25}\Leftrightarrow25x^2=24\times6\Leftrightarrow25x^2=144\Leftrightarrow x^2=\frac{144}{25}\Leftrightarrow\orbr{\begin{cases}x=-\frac{12}{5}\\x=\frac{12}{5}\end{cases}}\)
1)
4x=5y va x-2y=-5
ta co 4x=5y suy ra x/5=y/4
theo t/c cua ti le thuc ta co
x/5=y/4=x-2y/5-8=-5/-3=5/3
do do
x=25/3
y=20/3
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(VT=x+y\)
\(=\frac{a}{b}+\frac{c}{d}\)
\(=\frac{ad}{bd}+\frac{bc}{bd}\)
\(=\frac{ad+bc}{bd}\left(VP\right)\)
b) \(VT=x-y\)
\(=\frac{a}{b}-\frac{c}{d}\)
\(=\frac{ad}{bd}-\frac{bc}{bd}\)
\(=\frac{ad-bc}{bd}\left(VP\right)\)
Gõ phân số khó lắm. Chị gợi ý nhé.
a, Em nhân cả tử và mẫu của x với d, nhân cả tử và mẫu của y với b rồi cộng x với y lại. (Quy đồng mẫu số của x và y ấy)
b, Tương tự có điều lấy x trừ y