Tìm GTNN :\(\sqrt{x^2-4x-11}+\sqrt{x^2-8x+23}\) Ai biết làm ghi rõ từng bước với ạ, dạng này em chưa rành .Cảm ơn mọi người đã giúp đã em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
ĐK \(x^2-4x-5\ge0\)
Phương trình \(\Leftrightarrow2\left(x^2-4x-6\right)-3\sqrt{x^2-4x-5}=0\)
Đặt \(\sqrt{x^2-4x-5}=t\ge0\Rightarrow x^2-4x-5=t^2\Rightarrow x^2-4x-6=t^2-1\)
\(\Rightarrow2\left(t^2-1\right)-3t=0\Leftrightarrow2t^2-3t-2=0\Leftrightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=-\frac{1}{2}\left(l\right)\end{cases}}\)
Với \(t=2\Rightarrow x^2-4x-5=4\Rightarrow x^2-4x-9=0\Rightarrow\orbr{\begin{cases}x=2+\sqrt{13}\\x=2-\sqrt{13}\end{cases}}\)
Vậy phương trình có 2 nghiệm \(x=2+\sqrt{13}\)hoặc \(x=2-\sqrt{13}\)
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)
\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
ĐKXĐ : \(x\ge2\)
Ta có : \(A=\dfrac{x+3\sqrt{x-2}}{x+4\sqrt{x-2}+1}\) . Đặt t = \(\sqrt{x-2}\ge0\) \(\Rightarrow x=t^2+2\)
Khi đó : \(A=\dfrac{t^2+2+3t}{t^2+4t+3}=\dfrac{\left(t+2\right)\left(t+1\right)}{\left(t+3\right)\left(t+1\right)}=\dfrac{t+2}{t+3}=1-\dfrac{1}{t+3}\ge1-\dfrac{1}{3}=\dfrac{2}{3}\)
" = " \(\Leftrightarrow t=0\Leftrightarrow x=2\)
Vậy ...