Chứng minh rằng: B = 13 + 23 + 33 + ... + 1003 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
a, 3 2 + 4 2 = 25 = 5 2 là số chính phương.
b, 13 2 - 5 2 = 144 = 12 2 là số chính phương.
c, 1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2 là số chính phương.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
a) A=3+32+33+34+35+36+....+328+329+330A=3+32+33+34+35+36+....+328+329+330
⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)
⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)
⇔A=3.13+34.13+....+328.13⇔A=3.13+34.13+....+328.13
⇔A=13(3+34+....+328)⋮13(dpcm)⇔A=13(3+34+....+328)⋮13(dpcm)
b) A=3+32+33+34+35+36+....+325+326+327+328+329+330A=3+32+33+34+35+36+....+325+326+327+328+329+330
⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)
⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)
⇔A=3.364+....+325.364⇔A=3.364+....+325.364
⇔A=364(3+35+310+....+325)⇔A=364(3+35+310+....+325)
⇔A=52.7(3+35+310+....+325)⋮52(dpcm)
đầu tiên chứng minh là mày không bị thiểu năng bằng cách xóa câu hỏi này đi nhé
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
13 + 23 + 33 = 1 + 8 + 27 = 36.
Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.
Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.
Vậy mỗi tổng đã cho đều là số chính phương.
Tìm hiểu thì biết được công thức tính tổng lập phương các số tự nhiên liên tiếp:
\(A=1^3+2^3+3^3+...+n^3=\left(1+2+3+..+n\right)^2=\frac{1}{4}n^2\left(n+1\right)^2.\) (1)
Nên tổng B của đề bài chắc chắn là 1 số chính phương.
Để chứng minh công thức (1) nhiều sách viết theo phương pháp quy nạp. Mình trình bày cách chứng minh phù hợp hơn với lớp 7, lớp 8 chúng mình.
Trước hết tính tổng:
\(S_n=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Cách giải Bài toán 105 của online math giúp chúng ta tính được tổng này \(S=\frac{1}{4}\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)bằng cách nhân với 4 . Các bạn tham khảo nhé!
Mặt khác, viết S thành:
\(S=\left(2-1\right)\cdot2\cdot\left(2+1\right)+\left(3-1\right)\cdot3\cdot\left(3+1\right)+...+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
\(=2^3-2+3^3-3+4^3-4+...+n^3-n\)
\(=1^3+2^3+3^3+4^3+...+n^3-\left(1+2+3+4+...+n\right)\)
Với \(P_n=1+2+3+4+...+n=\frac{1}{2}n\left(n+1\right)\)
Suy ra \(A_n=S_n+P_n=\frac{1}{4}\left(n-1\right)n\left(n+1\right)\left(n+2\right)+\frac{1}{2}n\left(n+1\right)=\frac{1}{4}n\left(n+1\right)\left(n^2+n-2+2\right)\)
\(A_n=\frac{1}{4}n^2\left(n+1\right)^2\). đpcm
Bạn Đtinh Thy=ùy Linh ch mình hỏi n là gì đó