Cho tam giác ABC vuông góc ở A. Kẻ đường cao AH. Gọi I và K lần lượt là hình chiếu của điểm H trên AB và AC. Chứng minh:
- HI vuông góc với HK
- IA = HK
- IK = AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
Trong tam giác ABH :
góc IAH = góc IHB (cùng phụ góc AHI)
Trong tam giác ACH :
góc CAH = góc CHK (cùng phụ góc AHK)
cộng vế với vế :
IAH +CAH = IHB +CHK
90 = IHB + CHK
Suy ra 180 - IHB - CHK = IHK
180-90 = IHK
90 = HIK
HI _l_ HK
Tứ giác AIHK có 4 góc vuôn nên AIHK là Hình chữ nhật
=> IA = HK và IK =AH