Tìm Min của biểu thức sau:
A = 5x2 + 2y2 + 4xy - 2x +4y +2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5x2+2y2−4xy−8x−4y+19=(2x2−4xy+2y2)+4(x−y)+(3x2−12x)+19=2(x−y)2+4(x−y)+3(x2−4x+4)+7=2[(x−y)2+2(x−y)+1]+3(x−2)2+5=2(x−y+1)2+3(x−2)2+5≥0Dấu "=" xảy ra khi{x−y+1=0x−2=0↔{x=2y=x+1=3VậyMinA=5↔{x=2y=3
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
d,x^2+4y^2+z^2=2x+12y−4z−14
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
⇔x=1;y=3/2;z=−2
e: Ta có: x^2−6x+y2+4y+2=0
⇔x^2−6x+9+y^2+4y+4−11=0
⇔(x−3)^2+(y+2)^2=11
Dấu '=' xảy ra khi x=3 và y=-2
Đặt A = 5x2 + 2y2 + 4xy - 2x + 4y + 2022
= (2x2 + 4xy + 2y2) + 4(x + y) + 2 + (3x2 - 6x + 3) + 2017
= 2(x + y)2 + 4(x + y) + 2 + 3(x - 1)2 + 2017
= 2(x + y + 1)2 + 3(x - 1)2 + 2017 \(\ge\)2017
=> Min A = 2017
\(5x^2+2y^2+4xy-2x+4y+2022\)
\(=\left(4x^2+4x+y^2\right)+\left(y^2+4y+4\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2017\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\y+2=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy \(Min_A=2017\Leftrightarrow x=1;y=-2\)
B=5x2+4xy-2(x-2y)+2y2+3
=5x2+4xy-2x+4y+2y2+3
=(4x2+4xy+y2)+(x2-2x+1)+(y2+4y+4)-2
=(2x+y)2+(x-1)2+(y+2)2-2 \(\ge\) -2
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Ta có: A = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
= (4x2+ 4xy+y2 ) + ( x2 - 2x + 1) + (y2 + 4y + 2) + 2002
= (2x+y)2 + (x-1)2 + (y+2)2 +2002
Ta có: (2x+y)2>=0
Vx,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y(x-1)2 >=0
Vx. Dấu "=" XR khi x=1((y+2)2 >=0
Vy. Dấu "=" XR khi y=-2Vậy A>=2002
Vx,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)Do đó Min A=2002 tại (x,y)=(1,2)
Kẻ Vô Danh: Em kết luận giá trị y sai nhé.
GTNN của A là 2002 khi x = 1, y = - 2.