K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {dnv4510}`

`a,`

Xét `\Delta ABC:`

`\text {BC > AC > AB (5 cm > 4 cm > 3 cm)}`

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`=>` $\widehat {A} > \widehat {B} > \widehat {C}$.

`b,`

Ta có: A là trung điểm của BD

`-> \text {AC là đường trung tuyến}` `(1)`

K là trung điểm của BC

`-> \text {DK là đường trung tuyến}` `(2)`

Mà \(\text{AC }\cap\text{ DK = M}\) `(3)`

Từ `(1), (2)` và `(3)`

`-> \text {M là trọng tâm của} \Delta ABC` 

`@` Theo tính chất của trọng tâm trong `\Delta`

\(\text{MC = }\dfrac{2}{3}\text{AC}\)

Mà \(\text{AC = 4 cm}\)

`->`\(\text{MC = }\dfrac{2}{3}\cdot4=\dfrac{8}{3}\left(\text{cm}\right)\)

Vậy, độ dài của MC là `8/3 cm`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{A là trung điểm của BC}\\\text{AC }\bot\text{ BD}\end{matrix}\right.\)

`->`\(\text{CA là đường trung trực}\)

Ta có: \(\left\{{}\begin{matrix}\text{AC là đường trung trực (hạ từ đỉnh A)}\\\text{AC là đường trung tuyến (hạ từ đỉnh A) }\end{matrix}\right.\)

`@` Theo tính chất của các đường trong `\Delta` với `\Delta` cân

`->` \(\Delta\text{ BDC cân tại C (đpcm).}\)

loading...

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=8/3cm

c: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

7 tháng 7 2018

Chọn A

31 tháng 12 2021

2: Xét tứ giác ABDE có 

C là trung điểm của BE

C là trung điểm của AD

Do đó: ABDE là hình bình hành

Suy ra: AB//DE

6 tháng 3 2020

C H D E B A

+)Ta có:BA = BE (gt)

\(\implies\) B là trung điểm của AE\(\left(1\right)\)

+)Ta có:BD = BC (gt)

\(\implies\) B là trung điểm của DC\(\left(2\right)\)

Từ (1);(2) \(\implies\) B là trung điểm của AE ; DC

\(\implies\) AE và DC cắt nhau tại B

\(\implies\) Tứ giác ADEC là hình bình hành 

+)Kẻ AH vuông góc với DC 

Xét tam giác AHB có:

ABH + BAH + AHB =180 (tổng ba góc trong một tam giác)

\(\implies\) 60 + BAH + 90 =180

 \(\implies\)​​​ BAH =30 

\(\implies\) BH =\(\frac{1}{2}\) AB 

\(\implies\) BH = \(1\)  (cm)

Xét tam giác ABH vuông tại H có:

\(AH^2+BH^2=AB^2\) (định lý Py - ta - go)

 \(\implies\) \(AH^2+1^2=2^2\)

 \(\implies\) \(AH^2+1=4\)

 \(\implies\) \(AH^2=3\) (cm)

Ta có: BH + HC = BC

\(\implies\)1 + HC = 4

\(\implies\) HC = 3 (cm)

Xét tam AHC vuông tại H có:

\(AH^2+HC^2=AC^2\) (định lý Py - ta - go)

\(\implies\) \(3+3^2=AC^2\)

\(\implies\) \(3+9=AC^2\)

\(\implies\) \(AC^2=12\) 

\(\implies\) \(AC=\sqrt{12}\) (cm)

Ta có:HB + BD = HD

\(\implies\) 1 + 4 = HD

\(\implies\) HD = 5 (cm)

+)Xét tam giác AHD vuông tại H có:

\(AH^2+HD^2=AD^2\) (định lý Py - ta - go)

\(\implies\) \(3+5^2=AD^2\)

\(\implies\) \(3+25=AD^2\)

\(\implies\) \(28=AD^2\)

\(\implies\) \(AD=\sqrt{28}\) (cm)

Vậy diện tích hình tứ giác \(ACED\)\(=\sqrt{28}.\sqrt{12}=\sqrt{336}\) (cm)

6 tháng 3 2020

Lần đầu tớ vẽ hình trên máy tính nên có gì sai sót thì cậu thông cảm cho