ba người đy xe đạp từ a đến b, người 1 đi vs v1=10 km/h, sau 30' ,người người 2 xuất phát và đy vs v2=20km/h. Người 3 đy sau người 2 10'
người 2 gặp người 1 cách a bao xa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình chuyển động (coi mốc thơif gian bằng là thời điểm xe 1 xuất phát.......)
xe 1 : S1 = 8t
xe 2 : S2 = 12 (t-1/4 ) vì xe 2 đi sau xe1 15' bằng 1/4 giờ.
xe 3 : S3 = v3 (t-3/4 ) vì xe 3 đi sau xe2 30',tức sau xe1 45' bằng 3/4 giờ.
Tại thời điểm xe 1 gặp xe 3 : S1=S3 <=> v3(t-3/4) = 8t <=> v3 = 8t/(t-3/4 ) (1)
Sau 30' thì cách đều,tức t' = t +0.5. ta có : S3=( S1 + S2 )/2
<=> v3( t+0.5-3/4) = < 8(t+0.5)+12(t+0.5-1/4) >/2 (2)
từ (1) và (2) thì ta được t =7/4, thay vào 1 ta được v3= 14 km/h.
học tốt
Người thứ nhất cách A là:
(0,5+0,25).8=6(km)
Người thứ hai cách A là:
0,5.12 =6(km)
Gọi C là nơi nguời 1 gặp người 3
Thời gian người 1 gặp người 3 là:
t = 6V3−8t = 6 V3−8
Khi đó người 2 cách hai người kia là S = (12−8).6V3−8S = (12−8).6V3−8
= 24V3−8 = 24V3−8
Do sau 30 phút từ khi gặp người 1 người 3 cách đều 2 người kia ta có PT:
(V3−8).0,5 = S+(12−V3).0,5(V3−8).0,5 = S+(12−V3).0,5
Từ đó tìm được V3 = 14 (km/h)
Khi người thứ ba gặp người thứ nhất:
\(x_1=x_3\)\(\Rightarrow10t=v_3\left(t_1-\dfrac{2}{3}\right)\)\(\Rightarrow t_1=\dfrac{\dfrac{2}{3}v_3}{v_3-10}\)
Khi người 3 cách đều người 1 và người 2:
\(x_3=\dfrac{x_1+x_2}{2}=\dfrac{10t_2+20t_2-10}{2}=15t_2-5\left(km\right)\)
\(\Rightarrow v_3\cdot\left(t_2-\dfrac{2}{3}\right)=15t_2-5\)
Ta có: \(t_2-t_1=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{\dfrac{2}{3}v_3-5}{v_3-15}-\dfrac{\dfrac{2}{3}v_3}{v_3-10}=\dfrac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}v_3=18,43\\v_3=4,07\end{matrix}\right.\)
Câu 1)
Người thứ nhất đi đc trong 30p
\(s_1=v_1t=10,0.5=5\left(km\right)\)
Ng thứ 2 đi đc trong 30p
\(s_2=v_2t=12.0,5=6km\)
Gọi v3 là vận tốc của ng thứ 3, t1 t2 là khoảng tgian khi ng thứ 3 xuất phát và gặp ng thứ nhất và ng thứ 2
Khi ng thứ 3 gặp ng thứ nhất
\(v_3t_1=5+10t_1\\ \Rightarrow t_1=\dfrac{5}{v_3-10}\left(1\right)\)
Khi gặp ng thứ 2
\(v_3t_2=6+12t_2\\ \Rightarrow t_2=\dfrac{6}{v_3-12}\left(2\right)\)
Theo đề bài + từ (1) và (2)
\(\Rightarrow v_3=15km/h\)
giải thích cặn kẽ như sau:
do xe máy và xe đạp di chuyển ngược nhau và gặp nhau tại một điểm nên ta có:
t1=t2(t1 là của xe máy,t2 là của xe đạp)
\(\Leftrightarrow\frac{S_1}{v_1}=\frac{S_2}{v_2}\)
\(\Leftrightarrow\frac{S_1}{30}=\frac{S_2}{10}\)
mà quãng đường xe máy cộng quãng đường xe đạp bằng quãng đường AB(S1+S2=S=60)(cái này vẽ sơ đồ là biết)
\(\Rightarrow S_2=60-S_1\)
thế vào phương trình trên ta có:
\(\frac{S_1}{30}=\frac{60-S_1}{10}\)
giải phương trình ta được S1=45km,S2=15km
từ đó ta có t1=1.5 giờ và điểm gặp cách A 45km
Gọi t là thời gian 2 xe gặp nhau:
Vì 2 xe đi ngược chiều nên
t= \(\frac{s}{v_1+v_2}=\frac{60}{30+10}=\frac{3}{2}=1,5\left(h\right)=1h30'\)
Vị trí gặp nhau đó cách A:
L=v1.t= 30.1,5=45(km)
Thời gian để hai xe gặp nhau là:
60 : ( 30 + 10 ) = 1,5 ( giờ )
Vị trí hai người đó gặp nhau cách A :
30 x 1,5 = 45 ( km )
Thời gian để 2 xe gặp nhau là:
60 : (30 + 10) = 1,5 (giờ)
Vị trí gặp nhau là:
30 x 1,5 = 45 (km)
Đáp số : 45km
Sau khi người 2 bắt đầu xuất phát, người 1 đi được quãng đường:
1 = 10.\(\frac{1}{2}\) = 5 km.
Quãng đường người 1 đi được là : s1 = 5 + v1.t
Quãng đường người 2 đi được là : s2 = v2.t
Khi người 2 gặp người 1, ta có : s1 = s2 ;\(\Rightarrow\)t = 0,5h ;
Vây, người 2 gặp người 1 cách vị trí xuất phát là: 10km.