M.n giải hộ mk với: Cho tam giác ABC Vuông tại A, vẽ đường cao AH. Trên HC lấy điểm D sao cho HD=HB. Gọi E là Hình chiếu của C trên AD
a, TÍnh BH, Biết AB=30, Ac=40
b Chứng minh AB>EC=AC.ED
cTinhs diện tích tam giác CDE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy \(S\Delta ABC=\frac{1}{2}AB.AB=\frac{1}{2}BC.AH\Rightarrow AH=24\)
Vậy \(BH=\sqrt{AB^2-AH^2}=18\)
b. Xét tam giác ABC và EDC có:
góc A = góc E vuông
góc ABC= góc EDC (cùng bằng góc BDA)
Vậy \(\Delta ABC\sim\Delta EDC\left(g-g\right)\)
Vậy \(\frac{AB}{ED}=\frac{AC}{EC}\Rightarrow AB.EC=ED.AC\)
c. Ta thấy \(\frac{S\Delta EDC}{S\Delta ABC}=\left(\frac{DC}{BC}\right)^2=\left(\frac{50-18.2}{50}\right)^2=\frac{49}{625}\)
ta tính đc diện tích ABC từ đó suy ra diện tích EDC.
a)
Có: \(AH^2=HB.HC\left(HTL\right)\)
=> \(16=3HC\Rightarrow HC=\frac{16}{3}\)
Lần lượt áp dụng định lí PYTAGO ta được:
\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)
=> \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)
=> \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)
b) Có: BH và DI cùng vuông góc với EI
=> BH // DI
=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:
=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)
Mà: \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)
=> \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)
=> \(AH=HI\)
=> \(DI=6;HI=4\)
MÀ: \(EA=AH\left(gt\right)=4\)
=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)
Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)
=> Diện tích tam giác HCE \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)
Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa
a: Xét (I) có
ΔAHC nội tiếp đường tròn
AC là đường kính
Do đó: ΔAHC vuông tại H
hay AH\(\perp\)BC
a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)
\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)
b) HB // DI ( cùng vuông góc AI )
\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)
\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)
\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)
\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)
c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)
d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)
Bài làm
a) Xét tam giác ABH vuông tại H có:
Theo định lí Pytago có:
AB2 = AH2 + HB2
hay AB2 = 62 + 42
=> AB2 = 36 + 16
=> AB2 = 52
=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )
b) Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
Hay AC2 = 62 + 92
=> AC2 = 36 + 81
=> AC2 = 117
=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )
Ta có: BC = 9 + 4 = 13
=> BC2 = 132 = 169
AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)
=> BC2 = AB2 + AC2
=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )
c) Vì DE song song với AH
Theo định lí Thalets có:
\(\frac{CH}{HD}=\frac{AC}{AE}\)
hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)
=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)
Mà AB = \(2\sqrt{13}\)
=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )