Tìm x
a,(x+1).(x+2)<0
b,(x+5).(x+9)<0
GIÚP MÌNH VỚI!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
x + 678 = 2813
x = 2813 - 678
x = 2135
4529 + x = 7685
x = 7685 - 4529
x = 3156
x - 358 = 4768
x = 4768 + 358
x = 5126
2495 - x = 698
x = 2495 - 698
x = 1797
x × 23 = 3082
x = 3082 : 23
x = 134
36 × x = 27612
x = 27612 : 36
x = 767
x : 42 = 938
x = 938 x 42
x = 39396
4080 : x = 24
x = 4080 : 24
x =170
bài 2 :
a. x + 6734 = 3478 + 5782
x + 6734 = 9260
x = 9260 - 6734
x = 2526
b. 2054 + x = 4725 - 279
2054 + x = 4446
x = 4446 - 2054
x = 2392
c. x - 3254 = 237 x 145
x - 3254 = 34365
x = 34365 + 3254
x = 37619
d. 124 - x = 44658 : 54
124 - x = 827
x = 827 - 124
x = 703
\(a,\Rightarrow\left[{}\begin{matrix}x-1=2x\\1-x=2x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x+x-2=2\left(x\ge2\right)\\x+2-x=2\left(0\le x< 2\right)\\-x+2-x=2\left(x< 0\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(x\ge2\right)\left(tm\right)\\x=0\left(0\le x< 2\right)\left(tm\right)\\x=0\left(x< 0\right)\left(ktm\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a: Ta có: \(\left|x-1\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x\left(x\ge1\right)\\x-1=-2x\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
`a)4x(x-2)+x-2=0`
`<=>(x-2)(4x+1)=0`
`<=>[(x-2=0),(4x+1=0):}`
`<=>[(x=2),(x=-1/4):}`
Vậy `S={2;-1/4}.`
`b)(3x-1)^3-9=0`
`<=>(3x-1-3)(3x-1+3)=0`
`<=>(3x-4)(3x+2)=0`
`<=>[(3x-4=0),(3x+2=0):}`
`<=>[(x=4/3),(x=-2/3):}`
Vậy `S={4/3;-2/3}.`
`c)x^3-8+(x-2)(x+1)=0`
`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`
`<=>(x-2)(x^2+3x+5)=0`
Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`
`<=>x-2=0`
`<=>x=2`
Vậy `S={2}`
a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b)Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)
b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)
c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)
a) Ta có: \(4x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b) Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)
\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)
\(\Leftrightarrow12x=-2\)
hay \(x=-\dfrac{1}{6}\)
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)
\(\Leftrightarrow2x=-40\)
hay x=-20
\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)
\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)
\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)
\(\Leftrightarrow-3x-2=0\)
\(\Leftrightarrow-3x=2\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)
`#3107.101107`
a)
`(2x + 1)(x - 2) - 2x^2 = 0`
`<=> 2x^2 - 3x - 2 - 2x^2 = 0`
`<=> -3x - 2 = 0`
`<=> -3x = 2`
`<=> x = -2/3`
Vậy, `x=-2/3`
b)
`(x + 3)(2x - 1) + x^2 = 9`
`<=> 2x^2 - 5x - 3 + x^2 = 9`
`<=> 3x^2 - 5x - 3 = 9`
`<=> 3x^2 - 3x - 12 = 0`
`<=> 3x^2 + 4x - 9x - 12 = 0`
`<=> (3x^2 - 9x) + (4x - 12) = 0`
`<=> 3x(x - 3) + 4(x - 3) = 0`
`<=> (3x + 4)(x - 3) = 0`
`<=>` TH1: `3x + 4 = 0`
`<=> 3x = -4`
`<=> x = -4/3`
TH2: `x - 3 = 0`
`<=> x = 3`
Vậy,` x \in {-4/3; 3}.`
b) x+(x+1)+(x+2)+...+(x+100)=6565
( x + x + x +...... + x) + ( 1 + 2 + 3 + ..... + 100) = 6565
Có tất cả số hạng là số tự nhiên là
\(\left(100-1\right):1+1=100\left(số\right)\)
Tổng các số tự nhiên là
\(\left(100+1\right).100:2=5050\)
Có tất cả số hạng là số x
100 + 1 = 101
101x - 5050 = 6565
101x = 6565 + 5050
101x = 11615
x = 11615 : 101
x =115
a) \(\dfrac{3}{5}+x=\dfrac{1}{2}+1\)
\(\dfrac{3}{5}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{5}\)
\(x=\dfrac{15}{10}-\dfrac{6}{10}\)
\(x=\dfrac{9}{10}\)
b) \(3:x=\dfrac{2}{3}+2\dfrac{1}{2}\)
\(3:x=\dfrac{2}{3}+\dfrac{5}{2}\)
\(3:x=\dfrac{4}{6}+\dfrac{15}{6}\)
\(3:x=\dfrac{19}{6}\)
\(x=3:\dfrac{19}{6}\)
\(x=3\times\dfrac{6}{19}\)
\(x=\dfrac{18}{19}\)
Mik nhớ câu này làm rồi mak!!!
a,\(\dfrac{3}{5}\)+ x=\(\dfrac{1}{2}\)+1
\(\dfrac{3}{5}\)+x=\(\dfrac{3}{2}\)
x=\(\dfrac{3}{2}\)-\(\dfrac{3}{5}\)
x=\(\dfrac{9}{10}\)
b,
b) 3:x=23+2123:x=23+212
3:x=23+523:x=23+52
3:x=46+1563:x=46+156
3:x=1963:x=196
x=3:196x=3:196
x=3×619x=3×619
x=1819
a,(x+1)(x+2)<0
+)TH1 x+1<0 và x+2>0
=>x<-1 và>-2
=>-2<x<-1
+)TH2 x+1>0 và x+2<0
=>x>-1 và <-2(loại)
b,+)TH1 x+5>0 và x+9<0
=>x>-5 và <-9(loại)
+)TH2 x+5<0 và x+9>0
x<-5 và x>-9
-9<x<-5
thank nha!!!!