phan tich thanh nhan tu
2x4+5x3+13x2+25x+15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(8x+3\right)^2-25x^2=\left(8x+3\right)^2-\left(5x\right)^2=\left(8x+3+5x\right)\left(8x+3-5x\right)=\left(13x+3\right)\left(3x+3\right)\)
\(\left(2x+5\right)^2-6x-15=\left(2x+5\right)^2-3\left(2x-5\right)=\left(2x-5\right)^2-3\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-3\right)=\left(2x-5\right)\left(2x-2\right)=2\left(2x-5\right)\left(x-1\right)\)
(2x+5)^2-6x-15
=4x2+20x+25-6x-15
=4x2+14x+10
=(2x+1)2+9 (đề bài có nhầm không)
x^2 + 7x -15
= x^2 + 7x +12,25 -27,25
= (x+3,5)^2 - 27, 25
= ( x+3,5 - \(\sqrt{27,25}\))(x+3,5+\(\sqrt{27,25}\))
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)