Chứng minh rằng : n(2n-3)-2n(n+1)chia hết cho 5 .Với n € Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Dễ mà.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n⋮5\forall n\in Z\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\)
Chúc bạn học tốt.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
EZ NUB BRO CRY :>
Giả sử : A=(2n+3)2-(2n-1)2
=(4n2+12n+9)-(4n2-4n+1)
=(4n2-4n2)+(12n+4n)+(9-1)
=16n+8
=8(2n+1) ⋮ 8
Vậy A⋮8 (đpcm)
học lại hàng đẳng thức đáng nhớ đi bro :>
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath