K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó; ΔAHB∼ΔCHA

b: \(BH=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

AC=20cm

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

b: \(BH=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. Xét tam giác $AHB$ và $CHA$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)

$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)

b.

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

 

Hình vẽ:

loading...

2 tháng 3 2022

a. Xét tam giác ABC và tam giác HBA, có:

\(\widehat{A}=\widehat{H}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

\(\Leftrightarrow AB^2=BC.BH\) 

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)

Ta có:

\(AB^2=BC.BH\) ( cmt )

\(\Leftrightarrow15^2=25.BH\)

\(\Leftrightarrow225=25BH\)

\(\Leftrightarrow BH=9cm\)

\(\Rightarrow CH=BC-BH=25-9=16cm\)

 

26 tháng 8 2021

26 tháng 8 2021

13 tháng 10 2021

Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)

Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

1) Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$

$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)

$CH=BC-BH=8-4,5=3,5$ (cm)

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)

2. 3. Những phần này bạn làm tương tự như phần 1.

 

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ: