K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2022

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=\dfrac{5^2+8^2-7^2}{2.5.8}=\dfrac{1}{2}\)

\(\Rightarrow A=60^0\)

7 tháng 6 2017

Theo hệ quả định lí cosin, ta có cos A ^ = A B 2 + A C 2 − B C 2 2 A B . A C = 5 2 + 8 2 − 7 2 2.5.8 = 1 2 .

Do đó, A ^ = 60 ° .

 Chọn C.

1 tháng 3 2018

Chọn B.

Theo định lí hàm cosin, ta có

Do đó 

NV
5 tháng 2 2021

a.

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=7\)

\(S=\dfrac{1}{2}AB.AC.sinA=10\sqrt{3}\)

\(\Rightarrow h_a=\dfrac{2S}{BC}=\dfrac{20\sqrt{3}}{7}\)

\(R=\dfrac{BC}{2sinA}=\dfrac{7\sqrt{3}}{3}\)

b.

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{11}{34}\)

\(\Rightarrow sinA=\dfrac{3\sqrt{115}}{34}\)

\(S=\dfrac{1}{2}AB.AC.sinA=6\sqrt{115}\)

\(h_a=\dfrac{2S}{BC}=\dfrac{4\sqrt{115}}{7}\)

\(R=\dfrac{BC}{2sinA}=...\)

29 tháng 1 2019

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 tạo thành một đường tròn

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc nội tiếp chắn các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy chọn đáp án C.

27 tháng 11 2017

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 tạo thành một đường tròn

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc nội tiếp chắn các cung Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 10 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy chọn đáp án C.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

3 tháng 2 2021

\(AB^2=10^2\)

\(BC^2+AC^2=36+64=10^2\)

=> \(AB^2=AC^2+BC^2\)

=> t/g ABC vuông tại C

=> \(\widehat{ACB}=90^o\)

 

3 tháng 2 2021

90 độ

b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)

c: Số đo góc ở đỉnh là:

\(180-2\cdot20^0=140^0\)

d: Số đó góc ở đáy là:

\(\dfrac{180^0-60^0}{2}=60^0\)

19 tháng 2 2020

Lời giải:

D E B A F C

Ta có : \(\Delta ABC\)là tam giác đều => \(\widehat{A}=\widehat{B}=\widehat{C}\)

Xét tam giác AFD và tam giác BED có :

AD = BE (gt)

 \(\widehat{FAD}=\widehat{EBD}=60^0\)

AF = BD (gt)

=> \(\Delta AFD=\Delta BED\left(c-g-c\right)\)

=> DE = DF (hai cạnh tương ứng)                                      (1)

Xét tam giác ADF và tam giác CEF có :

AD = CE (gt)

\(\widehat{DAF}=\widehat{ECF}=60^0\)

AF = CF (gt)

=> \(\Delta ADF=\Delta CEF\)(c-g-c)

=> DF = EF (hai cạnh tương ứng)                                      (2)

Từ (1) và (2) => DE = DF = EF 

Vậy \(\Delta DEF\)là tam giác đều