cho tam giác ABC có AB =5 BC= 7 CA = 8. số đo góc A bằng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ quả định lí cosin, ta có cos A ^ = A B 2 + A C 2 − B C 2 2 A B . A C = 5 2 + 8 2 − 7 2 2.5.8 = 1 2 .
Do đó, A ^ = 60 ° .
Chọn C.
a.
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=7\)
\(S=\dfrac{1}{2}AB.AC.sinA=10\sqrt{3}\)
\(\Rightarrow h_a=\dfrac{2S}{BC}=\dfrac{20\sqrt{3}}{7}\)
\(R=\dfrac{BC}{2sinA}=\dfrac{7\sqrt{3}}{3}\)
b.
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{11}{34}\)
\(\Rightarrow sinA=\dfrac{3\sqrt{115}}{34}\)
\(S=\dfrac{1}{2}AB.AC.sinA=6\sqrt{115}\)
\(h_a=\dfrac{2S}{BC}=\dfrac{4\sqrt{115}}{7}\)
\(R=\dfrac{BC}{2sinA}=...\)
Các cung tạo thành một đường tròn
⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °
là các góc nội tiếp chắn các cung
Vậy chọn đáp án C.
Các cung tạo thành một đường tròn
⇒ x + 75 ° + 2 x + 25 ° + 3 x − 22 ° = 360 ° ⇒ 6 x = 282 ° ⇒ x = 47 °
là các góc nội tiếp chắn các cung
Vậy chọn đáp án C.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
Có
\(AB^2=10^2\)
\(BC^2+AC^2=36+64=10^2\)
=> \(AB^2=AC^2+BC^2\)
=> t/g ABC vuông tại C
=> \(\widehat{ACB}=90^o\)
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Lời giải:
Ta có : \(\Delta ABC\)là tam giác đều => \(\widehat{A}=\widehat{B}=\widehat{C}\)
Xét tam giác AFD và tam giác BED có :
AD = BE (gt)
\(\widehat{FAD}=\widehat{EBD}=60^0\)
AF = BD (gt)
=> \(\Delta AFD=\Delta BED\left(c-g-c\right)\)
=> DE = DF (hai cạnh tương ứng) (1)
Xét tam giác ADF và tam giác CEF có :
AD = CE (gt)
\(\widehat{DAF}=\widehat{ECF}=60^0\)
AF = CF (gt)
=> \(\Delta ADF=\Delta CEF\)(c-g-c)
=> DF = EF (hai cạnh tương ứng) (2)
Từ (1) và (2) => DE = DF = EF
Vậy \(\Delta DEF\)là tam giác đều
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=\dfrac{5^2+8^2-7^2}{2.5.8}=\dfrac{1}{2}\)
\(\Rightarrow A=60^0\)