cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(o). hai đường cao CE và AD cắt nhau tại H. Tia BO cắt (o) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM. Chứng minh CMID nội tiếp đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEDC có
\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)
\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC
Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
c) Do tứ giác AEDC là tứ giác nội tiếp nên ∠(CAB) = ∠(IDB) (cùng bù ∠(CDE) )
Mặt khác ∠(CAB) = ∠(CMB) (2 góc nội tiếp cùng chắn cung BC)
⇒ ∠(CMB) = ∠(IDB)
⇒ Tứ giác CMID là tứ giác nội tiếp ( Góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó)
a) Xét tứ giác AEDC có:
∠(AEC) = ∠(ADC) = 90 0
Mà 2 góc này cùng nhìn cạnh AC
⇒ Tứ giác AEDC là tứ giác nội tiếp
b) Xét ΔABD và Δ CEB có:
∠(ABC) chung
∠(ADB) = ∠(CEB) = 90 0
⇒ ΔABD ∼ Δ CBE (g.g)
1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)
nên BCDE là tứ giác nội tiếp
2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
góc EKB=góc DKC
Do đó: ΔEKB\(\sim\)ΔDKC
Suy ra: KE/KD=KB/KC
hay \(KE\cdot KC=KB\cdot KD\)
Gọi L' là giao của AD với BK
=>BL'//AC
=>BL;/AC=DB/DC
BL=BL'
BL=BK
=>BK=BL'
=>BK/AC=BK'/AC=DB/DC
mà BK/AC=SB/SC
nên cần chứng minh SB/SC=DB/DC
DB/DC*FC/FA*EA/EB=1
SB/SC*FC/FA*EA/EB=1
=>DB/DC=SB/SC
=>A,D,L thẳng hàng