Phân tích thành nhân tử:
a) \(x^2-6x+3\)
b) \(a^4+4b^4\)
c) \(a^{16}+a^8b^8+b^{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
1, a4 + a2 + 1
= a4 + 2a2 + 1 - a2
= (a2)2 + 2a2 + 1 - a2
= (a2 + 1)2 - a2
= (a2 + 1 - a)(a2 + 1 + a)
2, a4 + 4b4
= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2
= (a2 + 2b)2 - (ab)2
= (a2 + 2b - ab)(a2 + 2b + ab)
3, 64x4 + 1
= (8x2)2 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 + 1 - 4x)(8x2 + 1 + 4x)
4, x5 + x4 + 1
= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1
= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)
= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x3 - x + 1)
5, x7 + x2 + 1
= x7 – x + x2 + x + 1
= x(x6 – 1) + (x2 + x + 1)
= x(x3 – 1)(x3 + 1) + (x2 + x + 1)
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
6, x8 + x + 1
= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1
= (x8 + x7 + x6) - (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)
= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
7, x4 - 4x2 + 4x - 1
= x4 - (4x2 - 4x + 1)
= (x2)2 - (2x - 1)2
= (x2 - 2x + 1)(x2 + 2x - 1)
= (x - 1)2 (x2 + 2x - 1)
8, a16 + a8b8 + b16
= (a16 + 2a8b8 + b16) - a8b8
= (a8 + b8)2 - (a4b4)2
= (a8 + b8 - a4b4)(a8 + b8 + a4b4)
= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]
= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)
\(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\\ B=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\\ C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)
a) \(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\)
b) \(B=\left(x^2-2xy+y^2\right)-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)
c) \(C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)
`a, 9x^2 - 16 = (3x+4)(3x-4)`
`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`
`c, t^3-8 = (t-2)(t^2 - 2t + 4)`
`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`
a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)
d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)
a: =(a^2-b^2)-(2a-2b)
=(a-b)(a+b)-2(a-b)
=(a-b)(a+b-2)
b: =(3x-3y)+5y(x-y)
=3(x-y)+5y(x-y)
=(x-y)(5y+3)
c: \(=\left(x+y\right)^2\left(x-y\right)+x\left(y-x\right)\)
=(x-y)*(x+y)^2-x(x-y)
=(x-y)[(x+y)^2-x]
d: \(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
=(-x-4y+5)(3x+2y+3)
e: =16-(x^2-4xy+4y^2)
=16-(x-2y)^2
=(4-x+2y)(4+x-2y)
g: =9x^2-6x+1-(3xy-y)
=(3x-1)^2-y(3x-1)
=(3x-1)(3x-y-1)
h: =(x-y)^3-z^3
=(x-y-z)[(x-y)^2+z(x-y)+z^2]
=(x-y-z)(x^2-2xy+y^2+xz-yz+z^2)
a) \(a^2-b^2-2a+2b\)
\(=\left(a^2-b^2\right)-\left(2a-2b\right)\)
\(=\left(a+b\right)\left(a-b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) \(3x-3y-5x\left(y-x\right)\)
\(=\left(3x-3y\right)+5x\left(x-y\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
c) \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\left(x-y\right)+\left(xy-x^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2-x\right)\)
d) \(\left(x-y+4\right)^2-\left(2x+3y-1\right)\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
a/ \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
\(=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)
\(=\left(a^2+4b^2+4ab-1\right)\left(a^2+4b^2-4ab-9\right)\)
\(=\left(\left(a+2b\right)^2-1\right)\left(\left(a-2b\right)^2-9\right)\)
\(=\left(a+2b-1\right)\left(a+2b+1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)
b/ \(x^4+6x^3+7x^2-6x+1\)
\(=\left(x^4+6x^3+9x^2\right)-\left(2x^2+6x\right)+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x-1\right)^2\)
\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)
\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)
\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)
a.
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b.
\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)
\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)
\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)
\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)
c.
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)
\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)
\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)
\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(a^4+4a^2b^2+4b^4-\left(2ab\right)^2\)
\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
\(x^2-6x+3=x^2-3x-3x+3\)
\(=x\left(x-3\right)-3\left(x-1\right)\)
Ko phân tích được
Tất cả đều ko phân tích được bạn troll mik