K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2021

A B C H 6 8

a, Xét tam giác HBA và tam giác ABC ta có : 

^AHB = ^BAC = 900

^B _ chung 

Vậy tam giác HBA ~ tam giác ABC ( g.g )

b, Xét tam giác ABC vuông tại A, AH là đường cao 

Áp dụng định lí Pytago cho tam giác ABC : 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Vì tam giác HBA ~ tam giác ABC ( cma )

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow\frac{AH}{8}=\frac{6}{10}\Rightarrow AH=\frac{48}{10}=\frac{24}{5}\)cm 

5 tháng 9 2021

A B C M N S.ABC là : 60 x 80 : 2 = 2400 (cm2)

S.BNC là : 100 x 12 : 2 = 600

S.ABN là : 2400 - 600 = 1800

5 tháng 9 2021

thanks

21 tháng 4 2019

A B c H

A / Xét tam giác ABH và tam giác CBA

có góc AHB = góc BAC =90 độ

góc B chung 

=> tam giác ABH đồng dạng với tam giác CBA (g-g)

Xét tam giác CBA và tam giác CAH 

có góc AHC = góc BAC = 90 độ

Góc C chung

=> tam giác CBA đồng dạng với tam giác CAH (g-g)

Có + tam giác CBA đồng dạng với tam giác CAH 

      + tam giác ABH đồng dạng với tam giác CBA

=> tam giác ABH đồng dạng với tam giác CAH

Bài làm

a) Vì AH vuông góc với BC

=> Tam giác AHC vuông ở H.

=> \(\widehat{HAC}+\widehat{C}=90^0\)                                 (1) 

Vì HN vuông góc với AC

=> Tam giác HNC vuông ở N

=> \(\widehat{NHC}+\widehat{C}=90^0\)                             (2)

Từ (1) và (2) => \(\widehat{HAC}=\widehat{NHC}\)

Xét tam giác AHN và tam giác ACH có:

\(\widehat{ANH}=\widehat{HNC}\left(=90^0\right)\)

\(\widehat{HAC}=\widehat{NHC}\)

=> Tam giác AHN ~ tam giác ACH ( g - g )

b) Xét tam giác AHB vuông ở H,

Theo định lí Thales có:

\(AB^2=AH^2+HB^2\)

Hay \(15^2=12^2+HB^2\)

\(\Rightarrow225=144+HB^2\)

\(\Rightarrow HB^2=81\)

\(\Rightarrow HB=9\left(cm\right)\)

Xét tam giác AHC vuông ở H có:

\(AC^2=AH^2+HC^2\)

hay \(13^2=12^2+HC^2\)

\(\Rightarrow169=144+HC^2\)

\(\Rightarrow HC^2=25\left(cm\right)\)

\(\Rightarrow HC=5\left(cm\right)\)

Ta có: HB + HC = BC

hay 9 + 5 = BC

=> BC = 14 ( cm )

1: Xet ΔACB và ΔHCA có

góc C chung

góc CAB=góc CHA

=>ΔACB đồng dạng vói ΔHCA

2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)

AH=9*12/15=108/15=7,2cm

HB=12^2/15=144/15=9,6cm

=>HC=15-9,6=5,4cm

3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)

4: Xét ΔHAB có HE/HA=HD/HB

nên ED//AB

=>DE vuông góc AC

Xét ΔCAD có

DE,AH là đường cao

DE cắt AH tại E

=>Elà trực tâm

=>CE vuông góc AD

1: ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng vớiΔACB

 

7 tháng 11 2023

Câu 2 nữa bạn

21 tháng 4 2016

bạn dùng com-pa mà vẽ

  • kẻ đoạn bc= 5
  • cho khẩu lộ com-pa là 3 
  • vẽ đường tròn tâm b
  • cho khẩu lộ com-pa là 4 
  • vẽ đường tròn tâm c
  • hai đường tron cắt nhau ở đâu thì đó là điểm a
  • nối các điểm lại với nhau rồi tự đo góc nhé
  • câu 2 cũng làm tương tự
21 tháng 4 2016

xin lỗi phiền bạn vẽ hộ ra và đo góc hộ mình đc ko mình k biết đo góc A còn vẽ mình biết r