K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Áp dụng BĐT Cosy Schwarz : \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{b_1+b_2+b_3+...+b_n}.\)(*)

với \(b_1=a_1^2;b_2=a_2^2;b_3=a_3^2;...;b_n=a_n^2\)ta có:

\(\frac{a_1^2}{a^2_1}+\frac{a_2^2}{a^2_2}+\frac{a_3^2}{a_3^2}+...+\frac{a_n^2}{a^2_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}.\)

\(n\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}\Leftrightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\cdot\left(a^2_1+a^2_2+a^2_3+...+a^2_n\right)\)

Để đạt được dấu "=" thì \(a_1=a_2=a_3=...=a_n\).

13 tháng 6 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a_1+a_2+a_3+...+a_n\right)^2=\left(1.a_1+1.a_2+1.a_3+...1.a_n\right)^2\le\left(1^2+1^2+1^2+...+1^2\right)\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)

\(\Rightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a_1}{1}=\frac{a_2}{1}=\frac{a_3}{1}=...=\frac{a_n}{1}\Leftrightarrow a_1=a_2=a_3=...=a_n\)

Do đó, kết hợp với giả thiết của đê bài, ta được điều phải chứng minh.

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:a) ab và a/b là số vô tỉ.b) a + b và a/b là số...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=t$

Áp dụng TCDTSBN:

$t=\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}$

$\Rightarrow t^n=\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n(*)$

Lại có:

$\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=t.t.t....t$

$\Rightarrow \frac{a_1}{a_{n+1}}=t^n(**)$
Từ $(*)$ và $(**)$ ta có:

$\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n=\frac{a_1}{a_{n+1}}$ (đpcm)

11 tháng 7 2019