K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

A B C D M N H K

Kẻ MK//AB (\(K\in AH\)) \(\Rightarrow MK\perp AD\) , mà \(AH\perp DM\Rightarrow K\) là trực tâm tam giác \(AMD\Rightarrow DK\perp AM\)

Áp dụng Talet: \(\frac{HM}{BH}=\frac{MK}{AB}\)

\(\frac{BM}{MH}=\frac{CN}{ND}\Leftrightarrow\frac{BM}{MH}+1=\frac{CN}{ND}+1\Leftrightarrow\frac{BH}{MH}=\frac{CD}{ND}\Leftrightarrow\frac{MH}{BH}=\frac{ND}{CD}\)

\(\Rightarrow\frac{MK}{AB}=\frac{ND}{CD}\Rightarrow MK=ND\) (do AB=CD)

Mà KM//AB//CD \(\Rightarrow MKDN\) là hbh (tứ giác có cặp cạnh đối song song và bằng nhau)

\(\Rightarrow DK//MN\Rightarrow MN\perp AM\Rightarrow\widehat{AMN}=90^0\)

18 tháng 3 2016

A A B D C H N M  

Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)

Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)

Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)

và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)

Suy ra :

\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)

                               \(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)

Suy ra điều phải chứng minh

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

22 tháng 12 2019

c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:

∠POB = ∠QOD∠ (đối đỉnh),

OB = OD

∠PBO = ∠QDO (so le trong).

Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ

Lại có BP // DQ nên tứ giác PBQD là hình bình hành

Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.

23 tháng 8 2019

a) Ta có AD = BC; AD // BC (gt), AM = CN (gt)

⇒ AD – AM = BC – CN

Hay DM = BN

Lại có DM // BN

Do đó MNDN là hình bình hành ⇒ BM // DN

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.

a:MN vuông góc BD

BD//CP

=>NM vuông góc CP

Xét ΔNPC có

NM,CD là đường cao

NM cắt CD tại M

=>M là trực tâm

b: BDPC là hình bình hành

=>BP cắt DC tại trung điểm của mỗi đường

=>M là trung điểm của BP

ΔPNC có M là trực tâm nên PM vuông góc NC

=>BM vuông góc NC