Cho góc nhọn xOy. Gọi C là một điểm thuộc tia phân giác của góc xOy, kẻ CA vuông góc với Ox (A Î Ox), kẻ CB vuông góc với Oy (B Î Oy).
a) Chứng minh: CA = CB và tam giác OAB là tam giác cân.
b) Chứng minh OC vuông góc với AB
c) Gọi D là giao điểm của BC và Ox, E là giao điểm của AC và Oy. So sánh các độ dài CD và CE.
d) Cho biết OC = 13cm, OA = 12cm. Tính độ dài AC.
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó;ΔOAC=ΔOBC
Suy ra: OA=OB và CA=CB
hay ΔOAB cân tại O
b: Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên CO là đường cao
c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
Suy ra: CD=CE
d: OA=12cm
OC=13cm
=>AC=5cm