Hãy rút gọn : (x-1/2).(x+1/2).(4x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)
`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`
`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`
`= x^2 - 4x + 4`
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2\)
\(=\left(2-x\right)^2\)
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)
ĐKXĐ: \(x\ne\pm1\)
\(A=\left(\dfrac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\dfrac{\left(1-x\right)^2}{\left(1-x\right)\left(1+x\right)}+\dfrac{4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
\(=\left(\dfrac{x^2+2x+1-\left(x^2-2x+1\right)+4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)
\(=\left(\dfrac{4x^2+4x}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)
\(=\dfrac{4x\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)}{4\left(x+1\right)}=-\dfrac{x}{x+1}\)
\(\text{ P = (2x-1).4x^2+2x+1+(x+1)x^2-x+1}\)
\(\text{P =}\) \(\text{[(2x-1) . 4x^2 ]}\)\(\text{[(x+1) .x^2]}\)
\(\text{P = }\) \(\text{8x^3 - 4x^2 + 2x^3 + 2x^2 + 2x + 1 + x^3 - x + 1}\)
\(\text{P =}\) \(\text{(8x^3 + 2x^3 + x^3) + (-4x^2 + 2x^2) + (2x - x) + (1 + 1)}\)
\(\text{P =}\) \(\text{11x^3 - 2x^2 + x + 2}\)
Bài 1 :
\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)
\(=x^2-4x+4-x+9=x^2-5x+13\)
Bài 2 :
a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)
\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)
b, Thay x = -4 ta được :
\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)
`@` `\text {Ans}`
`\downarrow`
`A= (2x - 3)^2 - (2x + 3)^2`
`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`
`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`
`= -6 * 4x`
`= -24x`
Đặt `A=(1-3x)/(2x)+(3x-2)/(2x-1)+(3x-2)/(2x-4x^2)`
`=(2x(3x-2))/(2x(2x-1))-((3x-1)(2x-1))/(2x(2x-1))-(3x-2)/(2x(2x-1))`
`=(6x^2-4x-6x^2+5x-1-3x+2)/(2x(2x-1))`
`=(-2x+1)/(2x(2x-1))`
`=-1/(2x)`
`2x=1/(483)`
`=>A=-1/(1/483)=-483`
Để rút gọn biểu thức, ta sẽ thực hiện các phép tính và kết hợp các thành phần tương tự: P(2x-1).4x^2 + 2x + 1 + (x+1)x^2 - x + 1 = P(8x^3 - 4x^2) + 2x + 1 + x^3 + x^2 - x + 1 = P(8x^3) - P(4x^2) + x^3 + (2x-x) +(1+1) = **8Px^3 - 4Px^2**+ x^3 **+ x**+ **2** Vậy biểu thức đã được rút gọn thành: **8Px³ - 4Px²+x³+x+2**
mình mới lên lớp 6
\(\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right).\left(4x-1\right)\)=\(\left(x^2+\frac{1}{4}\right)\left(4x-1\right)\)
=\(4x^3-x^2+x-\frac{1}{4}\)