Tìm x,y biết 7x-5 phần 6 bằng 6y-4 phần 4 = 7x +6y-9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7x+5y-5x+3y-6y=4\)
\(\Leftrightarrow2x+2y=4\)
\(\Leftrightarrow x+y=2\)
Giá trị của \(x\)là:
\(\left(2+2\right)\div2=2\)
Giá trị của \(y\)là:
\(2-2=0\)
Ta có :
7x + 5y - 5x + 3y - 6y = 4
(7x-5x) + (5y+3y-6y ) = 4
x(7-5 ) + y(5+3-6 ) = 4
2x + 2y = 4
2 * ( x+y ) =4
x+y = 4:2
=>x+y = 2
mà x-y = 2 ( Dựa vào dạng toán tổng hiệu )
=> x = (2+2):2 = 2
=> y = 2-2 = 0
Vậy x=2 ; y=0
A=5x^2+6x^2+3y+7y=11x^2+10y
B=7x^3+6x^3+6y+5y+36=13x^3+11y+36
C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4
C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2
a: \(=\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot x^{n-1+2n+1+1}\cdot y^{2n+1+n+1}=\dfrac{1}{2}x^{3n+1}y^{3n+2}\)
Hệ số: 1/2
Bậc: 6n+3
b: \(=\dfrac{6}{5}\cdot\dfrac{4}{2}\cdot\dfrac{2}{6}\cdot x^{3-n+4-n}\cdot y^{5-n+6-n}=\dfrac{4}{5}x^{7-2n}y^{11-2n}\)
Hệ số: 4/5
bậc: 18-4n
c: \(=\dfrac{4}{7}x^{2-n+2n-3+1}y^{1+n-1+1}=\dfrac{4}{7}x^{n-1}y^{n+1}\)
Hệ số: 4/7
Bậc: 2n
d: =4/7x^(2n+2)*y^(2n+2)
Hệ số: 4/7
Bậc: 4n+4
\(b,7+3x=3\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(c,6y+2=20\)
\(\Leftrightarrow6y=18\)
\(\Leftrightarrow y=3\)
\(d,4y=10\)
\(\Leftrightarrow y=\dfrac{10}{4}\)
\(\Leftrightarrow y=\dfrac{5}{2}\)
\(e,5x-7=13\)
\(\Leftrightarrow5x=20\)
\(\Leftrightarrow x=4\)
\(f,\dfrac{4}{3}x+\dfrac{7}{2}=10\)
\(\Leftrightarrow\dfrac{4}{3}x=\dfrac{13}{2}\)
\(\Leftrightarrow x=\dfrac{39}{8}\)
\(g,4-\dfrac{2}{3}y=2\)
\(\Leftrightarrow\dfrac{2}{3}y=2\)
\(\Leftrightarrow y=3\)
\(h,6x=36\Leftrightarrow x=6\)
\(j,7x-3=0\)
\(\Leftrightarrow7x=3\)
\(\Leftrightarrow x=\dfrac{3}{7}\)
a, (\(\dfrac{-5}{9}\)x^6y^4).(\(\dfrac{9}{10}\)x^3y)
=\(\dfrac{-1}{2}\)x^9y^5
b, thay x=-1; y=2 vào biểu thức ta được
\(\dfrac{-1}{2}\).-1^9.2^5
=\(\dfrac{-1}{2}\).(-1).32
=16
vậy với x=-1 y=2 biểu thức ta được 16
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{\left(7x-5\right)+\left(6x-4\right)}{6+4}=7x+6y-9\Leftrightarrow\frac{7x+6y-9}{10}=7x+6y-9\Leftrightarrow63x+54y-81=0\)
lại có: \(\frac{7x-5}{6}=\frac{6y-4}{4}\Rightarrow28x-20=36y-24\Rightarrow7x=9y-1\)
nên \(63x+54y-81=0\Leftrightarrow7x\cdot9+54y-81=0\Leftrightarrow9\left(9y-1\right)+54y-81=0\Leftrightarrow81y-9+54y-81=0\Leftrightarrow135y-90=0\Leftrightarrow y=\frac{90}{135}=\frac{2}{3}\Rightarrow x=\frac{9y-1}{7}=\frac{5}{7}\)