K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

 xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy' 
gọi ot và ot' là hai tia phân giác tương ứng 

Thấy: góc xoy = góc x'oy' 
=> góc yot = góc y'ot' 

ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o 

<=> góc toy' + góc y'ot' = góc tot' = 180o 

=> ot và ot' là hài tia đối nhau

9 tháng 7 2016

xx' và yy' cắt nhau tại O

Ot và Ot' lần lượt là 2 tia phân của xOy và x'Oy'

Giải:

Ot là tia phân giác của xOy

=> xOt = tOy = \(\frac{xOy}{2}\)

Ot' là tia phân giác x'Oy'

=> x'Ot' = t'Oy' = \(\frac{x'Oy'}{2}\)

mà xOy = x'Oy' (2 góc đối đỉnh)

=> xOt = x'Ot'

mà xOt' +t'Ox' = 1800

=> xOt + t'Ox' = 1800

=> xOt và t'Ox' kề bù

=> Ot và Ot' là 2 tia đối nhau.

 

        

9 tháng 9 2016

x x' y y' O t r'

Giả sử: Vẽ hai đường thẳng xx' và b cắt nhau tại xx'.

Kẻ Ot là tia phân giác \(\widehat{xx'}\)

Và tia Ot' là tia phân giác \(\widehat{yy'}\)

\(\Rightarrow Ox\) nằm giữa \(Ot,Oy\)

Như vậy áp dụng tính chất có:

\(\widehat{tOt'}=\widehat{tOx}+\widehat{xOt'}\)

Mà: \(\widehat{tOx}=\widehat{x'Ot'}\) (\(=\frac{1}{2}\) của hai góc đối đỉnh)

Lại có: Ot' nẵm giữa hai tia Ox và Ox'

 \(\widehat{tOt'}=\widehat{x'Ot'}+\widehat{t'Ox}=\widehat{xOx'}=180^o\) (hai tia đối tạo thành góc có số đó 180 độ)

Vậy: Ot và Ot' đối nhau (đpcm)

 

17 tháng 9 2015

xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy' 
gọi ot và ot' là hai tia phân giác tương ứng 

Thấy: góc xoy = góc x'oy' 
=> góc yot = góc y'ot' 

ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o 

<=> góc toy' + góc y'ot' = góc tot' = 180o 

=> ot và ot' là hai tia đối nhau

17 tháng 9 2015

câu hỏi tương tự

6 tháng 8 2018

Có: góc xOm và yOn đối đỉnh

    Ot; Ot' lần lượt là p/g của góc xOm; yOn

Chứng minh: Ot; Ot' là 2 tia  đối nhau

+) Ot là p/g của góc xOm => góc mOt = 12 .góc xOm

Ot' là p/g của góc yOn => góc nOt' = 12 . góc yOn

Mà góc xOm = góc yOn nên góc mOt = nOt'

+) Om; On là 2 tia đối nhau nên Ot nằm giữa 2 tia Om ; On

=> góc mOt + tOn = mOn = 180o

=> nOt' + tOn = 180o

=> góc tOt' = 180o => Ot; Ot; là 2 tia đối nhau

27 tháng 8 2015

gọi 2 góc dối đỉnh lần lượt là BÂC và B'ÂC' 
tia Ax là phân giác của BÂC,tia Ay là phân giác của B'ÂC' 
vì B'ÂC' đối đỉnh với BÂC=>B'ÂC'=BÂC=>BÂx=C'Ây=BÂC/2 
mà C' , A , B thẳng hàng và BÂx=C'Ây nên Ax thẳng hàng với Ay 
mà Ax và Ay có điểm chung là A, Ax thẳng hàng với Ay nên 2 tia phân 
giác củ 2 góc đối dỉnh là 2 tia đối nhau(đpcm)

24 tháng 7 2019

O x x' y n y' m 1 2 3

Giả sử: \(\widehat{xOy}\) và \(\widehat{x'Oy'}\)là 2 góc đối đỉnh

            Om là tia phân giác của \(\widehat{xOy}\)

           On là tia phân giác của  \(\widehat{x'Oy'}\)

C/m On và Om là 2 tia đối nahu

Vì \(\widehat{xOy}=\widehat{x'Oy'}\)( 2 góc đối đỉnh )

Mà \(\widehat{O_1}=\frac{1}{2}\widehat{xOy}\)(  Om là tia phân giác của \(\widehat{xOy}\))

      \(\widehat{O_3}=\frac{1}{2}\widehat{x'Oy'}\)( On là tia phân giác của  \(\widehat{x'Oy'}\))

\(\Rightarrow\widehat{O_1}=\widehat{O_3}=\frac{1}{2}\widehat{xOy}\)

\(\Rightarrow\widehat{O_1}+\widehat{O_3}=\widehat{xOy}\)

Ta có: \(\widehat{xOy}+\widehat{O_2}=180^o\)( 2 góc kề bù )

Mà \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}=\widehat{mOn}\)

=> \(\widehat{mOn}=180^o\)

=> Om và On là 2 tia đối nhau

4 tháng 9 2016

 

Hỏi đáp ToánGiả sử 2 góc đối đỉnh đó là xOm và yOn

Ot là phân giác của góc xOm. Ot' là tia đối của tia Ot. cần chứng minh: Ot' là phân giác của góc yOn

Vì Ot; Ot' là 2 tia đối nhau; Ox; Oy là 2 tia đối nhau ; Om; On đối nhau

=> góc xOt = góc yOt' ; góc tOm = góc t'On ﴾ đối đỉnh﴿

Mà góc xOt = góc tOm ﴾do Ot là p/g của góc xOm﴿

=> góc yOt' = góc t'On ; Ot' nằm giữa 2 tia Oy và On

=> Ot' là p/g của góc yOn