Chung to
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Ghi cach giai giup mk vs nka
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
=> 1/2+1/3+…+1/63>2
t i c k nhé !! 5756876876978080
Ta có:
\(\frac{1}{2}=\frac{1}{2}\)
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+...+\frac{1}{8}>4.\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}>4.\frac{1}{2}=2\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)(50 số hạng)
=> A > \(\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 số hạng)
=> A > \(\frac{1}{150}.50\)
=> A > \(\frac{1}{3}\)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\) > \(\frac{1}{3}\)(Đpcm)
từ \(\frac{1}{101}\)đến \(\frac{1}{150}\)có 50 phân số.
có :\(\frac{1}{101}\)lớn hơn \(\frac{1}{150}\)
\(\frac{1}{102}\)lớn hơn \(\frac{1}{150}\)........cứ như vậy cho đến \(\frac{1}{149}\)lớn hơn \(\frac{1}{150}\).suy ra tổng 50 phân số đã cho lớn hơn 50 nhân vơi \(\frac{1}{150}\)=\(\frac{1}{3}\)
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
\(\frac{\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)=\(\frac{1}{\frac{7}{2}}\)=\(\frac{2}{7}\)
\(P=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\ge\frac{3.4}{a^2+b^2+2ab}+\frac{2}{\left(a+b\right)^2}=\frac{14}{\left(a+b\right)^2}=14\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
\(x-\frac{2x+1}{2}-\frac{x+2}{3}=\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}\)
\(=\frac{6x-6x-3-2x-4}{6}=\frac{-2x-7}{6}>1\)
\(\Leftrightarrow-2x-7>6\)
\(\Leftrightarrow-2x>13\)
\(\Leftrightarrow x< \frac{-13}{2}\)
Vậy để biểu thức > 1 khi và chỉ khi x < -13/2
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)