Cho AABC có AB = AC = 6cm, BC = 8cm. Đường phân giác góc B cắt AC tại N, đường phân giác góc C cắt AB tại M.
a) Chứng minh rằng MN || BC.
b) Tinh độ dài MN
Giúp mình với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔMBN và ΔMCA có
góc MBN=góc MCA
góc BMN=góc CMA
=>ΔMBN đồng dạng với ΔMCA
b: AB/AC=MB/MC=MN/MA
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
a: Xét ΔBAC có BM là phân giác
nen AM/MC=AB/BC=AC/BC
Xet ΔABC có CN là phân giác
nen AN/NB=AC/BC
=>AM/MC=AN/NB
=>MN//BC
b: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc A chung
=>ΔANC đồng dạng với ΔAMB
c: AM/AB=MC/BC
=>AM/5=MC/6=5/11
=>AM=25/11cm; MC=30/11cm
MN//BC
=>MN/BC=AM/AC
=>MN/6=25/11:5=5/11
=>MN=30/11cm
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)
Vậy: BD=3cm; CD=4cm
a: Xét ΔABC có BN là phân giác
nên AN/NC=AB/BC=AC/BC(1)
Xét ΔABC có CM là phân giác
nên AM/MB=AC/BC(2)
Từ (1) và (2) suy ra AM/MB=AN/NC
hay MN//BC
b: Xét ΔABC có CM là phân giác
nên AM/AC=BM/BC
=>AM/6=BM/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{6}=\dfrac{BM}{8}=\dfrac{AM+BM}{6+8}=\dfrac{6}{14}=\dfrac{3}{7}\)
Do đó:AM=18/7(cm)
Xét ΔABC có MN//BC
nên AM/AB=MN/BC
=>MN/8=3/7
hay MN=24/7(cm)