K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác HMCN có 

\(\widehat{HMC}+\widehat{HNC}=180^0\)

Do đó: HMCN là tứ giác nội tiếp

b: Xét tứ giác ANMB có 

\(\widehat{ANB}=\widehat{AMB}=90^0\)

Do đó: ANMB là tứ giác nội tiếp

29 tháng 1 2021

a) Ta có  AD là đường cao của △ABC (gt) 

=> AD⊥BC => \(\widehat{CDA} = 90^o\)

Tương tự ta có \(\widehat{CEB}=90^o \)

Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn 

b) △AEH và △ADC , có  

\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g) 

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)

Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn ) 

△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2) 

Từ (1) và (2) => \(AF^2= AH.AD\)

16 tháng 7 2021

a,  ta có BM , CN là các đường cao \(=>\angle\left(BMC\right)=\angle\left(CNB\right)=90^o\)(1)

mà N,M là 2 đỉnh liên tiếp của tứ giác BNMC

\(=>\) tứ giác BMNC nội tiếp đường tròn 

=>4 điểm B,M,N,C cùng thuộc 1 đường tròn

b, có AD là đường kính (O) =>tam giác ACD nội tiếp (O)

\(=>\angle\left(ACD\right)=90^o\)(2)

từ(1)(2) \(=>BM//CD=>BH//CD\left(3\right)\)

tương tự =>tam giác ABD nội tiếp (O)\(=>\angle\left(ABD\right)=90^o\left(4\right)\)

từ(1)(4) \(=>BD//CN< =>CH//BD\left(5\right)\)

từ(3)(5)=>BHCD là hình bình hành

 

29 tháng 11 2023

a: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó; ΔBMC vuông tại M

=>CM\(\perp\)MB tại M

=>CM\(\perp\)AB tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đó;ΔBNC vuông tại N

=>BN\(\perp\)NC tại N

=>BN\(\perp\)AB tại N

Xét ΔABC có

BN,CM là đường cao

BN cắt CM tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại K

b: Xét tứ giác AMHN có

\(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp đường tròn đường kính AH

=>A,M,H,N cùng thuộc đường tròn đường kính AH

tâm I là trung điểm của AH

c: IM=IH

=>ΔIMH cân tại I

=>\(\widehat{IMH}=\widehat{IHM}\)

mà \(\widehat{IHM}=\widehat{KHC}\)(hai góc đối đỉnh)

và \(\widehat{KHC}=\widehat{MBC}\left(=90^0-\widehat{MCB}\right)\)

nên \(\widehat{IMH}=\widehat{MBC}\)

OM=OC

=>ΔOMC cân tại O

=>\(\widehat{OMC}=\widehat{OCM}\)

=>\(\widehat{OMC}=\widehat{MCB}\)

\(\widehat{IMO}=\widehat{IMH}+\widehat{OMH}\)

\(=\widehat{MCB}+\widehat{MBC}=90^0\)

=>IM là tiếp tuyến của (O)

Xét ΔIMO và ΔINO có

IM=IN

MO=NO

IO chung

Do đó: ΔIMO=ΔINO

=>\(\widehat{IMO}=\widehat{INO}=90^0\)

=>IN là tiếp tuyến của (O)

22 tháng 10 2023

1: Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

=>AEDB là tứ giác nội tiếp đường tròn đường kính AB

Tâm I là trung điểm của AB

Bán kính là \(IA=\dfrac{AB}{2}\)

2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>\(DB\cdot DC=DA\cdot DH\)

3: ABDE là tứ giác nội tiếp

=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)

Xét (O) có

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{ABN}=\widehat{AMN}\)

=>\(\widehat{HDE}=\widehat{HMN}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//MN

10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

a: góc AEH+góc ADH=180 độ

=>AEHD nội tiêp

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc ABI=góc ACK(=90 độ-góc BAC)

góc ABI=1/2*sđ cung AI

góc ACK=1/2*sđ cung AK

=>sđ cung AI=sđ cung AK

=>AI=AK