K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO

OH vuông góc MN

=>MN là đường kính của (H)

=>HM=HN

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BFC=1/2*180=90 độ

=>BF vuông góc AC

góc BEC=góc BFC=90 độ

=>BEFC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

góc A chung

=>ΔAEC đồng dạng với ΔAFB

=>AE/AF=AC/AB

=>AE*AB=AF*AC

c: góc BHC=góc BOC

góc BHC+góc BAC=180 độ

=>góc BOC+góc BAC=180 độ

=>góc BAC=60 độ

=>góc KOC=60 độ

=>OK/OC=1/2

a: góc BFC=góc BEC=1/2*180=90 độ

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

góc AFH+góc AEH=180 độ

=>AEHF là tứ giác nội tiếp

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AD*AH

26 tháng 10 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)AC

XétΔABC có

CE,BF là đường cao

CE cắt BF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

\(\widehat{A}\) chung

Do đó: ΔAEC ~ΔAFB

=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

c: Xét ΔAEF và ΔACB có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF~ΔACB

=>\(\widehat{AEF}=\widehat{ACB}\)

d: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

a: Xéttứ giác AEHF có góc AEH+góc AFH=180 độ

nên AEHF là tứ giác nội tiếp

c: Xét tứ giác AEDC có góc ADC=góc AEC=90 độ

nên AEDC là tứ giác nội tiếp

d: góc EDA=góc ABF

góc FDA=góc FDH=góc ACE

mà góc ABF=góc ACE

nên góc EDA=góc FDA

=>DA là phân giác của góc EDF

a: góc BEC=góc BDC=1/2*180=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc EFH=góc ABD

góc DFH=góc ACE
mà góc ABD=góc ACE

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp