K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

Ta có:\(\frac{46-3\sqrt{39}}{4}< \frac{46-3\sqrt{36}}{4}\)

Mà \(\frac{46-3\sqrt{36}}{4}=\frac{46-3.6}{4}=\frac{46-18}{4}=\frac{28}{4}=7=\sqrt{49}< \sqrt{50}\)

Vậy \(\frac{46-3\sqrt{39}}{4}< \sqrt{50}\)

11 tháng 6 2016

Ta có:

\(\frac{46-3\sqrt{39}}{4}< \frac{46-3\sqrt{36}}{4}=\frac{46-18}{4}=7=\sqrt{49}< \sqrt{50}.\)

Ta có: \(12>9\)

\(6\sqrt{3}>4\sqrt{5}\)

Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)

\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)

5 tháng 12 2021

Ta có: √12+6√3 = √9+6√3+√3

=3+√3 (1)ta co√9+4√5=√5+2 (2)từ (1) và (2) ta co√12+6√3>√9+4√5 
9 tháng 7 2017

Có \(\sqrt{8}\). 4 = \(\sqrt{\frac{128}{16}}\).4 > \(\sqrt{\frac{81}{16}}\).4 = 9/4 . 4 =9 = 3.3

<=> \(\frac{\sqrt{8}}{3}\)> 3/4 

8 tháng 12 2017

struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }

11 tháng 10 2015

Có Ta có\(VT=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\frac{1}{\sqrt{2015}}+\sqrt{2014}+\frac{1}{\sqrt{2014}}.\)\(2014<2015\Leftrightarrow\sqrt{2014}<\sqrt{2015}\Leftrightarrow\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\Leftrightarrow\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>0\Leftrightarrow VT>VP\)

 

 

26 tháng 8 2016

a) \(9=6+3=6+\sqrt{9}\)

\(6+2\sqrt{2}=6+\sqrt{8}\)

\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)

c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)

\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)

\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)

\(2^2=14-10=14-\sqrt{100}\)

\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)

 

7 tháng 6 2021

Giúp mình với 

7 tháng 6 2021

\(\sqrt{5-3}=\sqrt{2}\)

\(2>\sqrt{2}\)

\(\Leftrightarrow2>\sqrt{5-3}\)