giải phương trình sau:
x^4+x^2+6x-8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x3-6x2+11x-6=0
hay x3-x2-5x2-+5x+6x-6=0
=>x(x-1) - 5x(x-1)+6(x-1)=0
(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0
(x-1)(x(x-2)-3(x-2)=0
(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0
<=> x=1 hoặc x=2 hoặc x=3
vậy S ={1;2;3}
`x(x - 4) - 3x + 12 = 0`
`<=> x(x - 4) + 3(x - 4) = 0`
`<=> (x + 3)(x - 4) = 0`
`<=>` $\left[\begin{matrix} x + 3 = 0\\ x - 4 = 0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x = -3\\ x = 4\end{matrix}\right.$
Vậy `S = {-3; 4}`
\(x+x^2=0\)
\(\Leftrightarrow x\left(1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: Phương trình có tập nghiệm \(S=\left\{0;-1\right\}\)
\(x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
\(\dfrac{1}{x+2}+\dfrac{6x+12}{x^3+8}-\dfrac{7}{x^2-2x+4}=0\) \(\left(đk:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{x^2-2x+4+6x+12-7\left(x+2\right)}{x^3+8}=0\)
\(\Leftrightarrow\dfrac{x^2-3x+2}{x^3+8}=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(TM)
Vậy ...
dk : x khac -2
\(\Rightarrow x^2-2x+4+6x+12-7\left(x+2\right)=0\)
\(\Leftrightarrow x^2+4x+16-7x-14=0\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
x4+x2+6x−8=0x4+x2+6x−8=0
⇔x4−x3+x3−x2+2x2−2x+8x−8=0⇔x4−x3+x3−x2+2x2−2x+8x−8=0
⇔x3(x−1)+x2(x−1)+2x(x−1)+8(x−1)=0⇔x3(x−1)+x2(x−1)+2x(x−1)+8(x−1)=0
⇔(x−1)(x3+x2+2x+8)=0⇔(x−1)(x3+x2+2x+8)=0
⇔(x−1)[x3+2x2−x2−2x+4x+8]=0⇔(x−1)[x3+2x2−x2−2x+4x+8]=0
⇔(x−1)[x2(x+2)−2x(x+2)+4(x+2)]=0⇔(x−1)[x2(x+2)−2x(x+2)+4(x+2)]=0
⇔(x−1)(x+2)(x2−2x+4)=0⇔(x−1)(x+2)(x2−2x+4)=0
Mà x2−2x+4=x2−2x+1+3=(x−1)2+3>0x2−2x+4=x2−2x+1+3=(x−1)2+3>0
⇔(x−1)(x+2)=0⇔(x−1)(x+2)=0
⇔[x=1x=−2
\(x^4 +x^2+6x-8=0\)
\(<=>x^4+2x^2+1-x^2-9=0\)
\(<=>(x^2+1)^2-(x-3)^2=0\)
\(<=>(x^2-x-4)(x^2+x-2)=0\)
\(<=>(x^2-x-4)(x^2+2x-x-2)=0\)
\(<=>(x^2-x-4)(x(x+2)-(x+2))=0\)
\(<=>(x^2-x-4)(x-1)(x+2)\)
vì \((x^2-x-4)=(x-1/2)^2+15/4>\)hoặc bằng \(15/4\)
\(=>x-1=0<=>x=1\)
hoặc \(x+2=<=>2=-2\)
HT