K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2022

\(p=\dfrac{a+b+c}{2}=15\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{15\left(15-8\right)\left(15-10\right)\left(15-12\right)}=15\sqrt{7}\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+12^2-8^2}{2.10.12}=\dfrac{3}{4}\Rightarrow A\approx41^024'\)

28 tháng 6 2021

a.     + CH = 10 - 3.6 = 6.4 (cm)

     - Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :

         + \(AH^2=BH.CH\)

      \(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)

         + \(AB^2=BC.BH\)

      \(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)

       + \(AC^2=BC.CH\)

      \(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)

b.       \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

c.       \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)

Bổ sung đề: \(\widehat{B}=30^0\)

a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{B}\) là cạnh AC

nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)

\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)

hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)

Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

23 tháng 6 2019

a) + Δ ABC vuông tại A, có Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

(Trong một tam giác vuông, cạnh đối diện với góc 30o bằng một nửa cạnh huyền)

+ Δ ABC có BD là phân giác của Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) AB = 12,5cm ⇒ BC = 2AB = 2.12,5 = 25cm

Áp dụng định lí Py- ta- go vào tam giác ABC ta có:

AB2 + AC2 = BC2 nên AC2 = BC2 - AB2

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Chu vi tam giác ABC là:

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Diện tích tam giác ABC là:

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bạn giải chi tiết quá, mình hiểu hết trơn😆

30 tháng 6 2017

Tổng độ dài hai cạnh AB và AC là :
24 - 10 = 14 ( cm )
Độ dài cạnh AB là :
14 : ( 3 + 4 ) x 3 = 6 ( cm )
Độ dài cạnh AC là :
14 - 6 = 9 ( cm )
Diện tích hình tam giác ABC là :
6 x 9 : 2 = 27 ( cm2)
Đáp số : 27 cm2

30 tháng 6 2017

tổng độ dài hai cạnh là

24-10=14 cm

độ dại cạnh AB là 

14:(3+4).3=6 cm

độ dài cạnh AC là

14-6=8 cm

diện tích là

6.7:2=27cm2

đáp số...............

7 tháng 5 2018

* Cách vẽ:

- Kẻ tỉa Ax bất kì khác tia AB, AC

- Trên tia Ax, lấy hai điểm E và F sao cho AE = 2 (đơn vị dài), EF = 3 (đơn vị dài)

- Kẻ đường thẳng FB

- Từ E kẻ đường thẳng song song với FB Cắt AB tại M.

- Kẻ đường thẳng FC.

- Từ E kẻ đường thẳng song song với FC cắt AC tại N.

Ta có M, N là hai điểm cần vẽ.

* Chứng minh:

Gọi p' và S' là chu vi và diện tích của  △ AMN.

Trong △ ABC, ta có: MN // BC

Suy ra:  △ AMN đồng dạng ΔABC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:a)     Tổng độ dài của cạnh AB và AC là bao nhiêu?b)   Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm. Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.a)    Tính độ dài BC.b)   Tính diện tích tam giác ABC, biết chiều cao AH là 15cm. Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:

a)     Tổng độ dài của cạnh AB và AC là bao nhiêu?

b)   Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.

 

Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.

a)    Tính độ dài BC.

b)   Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.

 

Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.

 

Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:

a) Tổng độ dài của cạnh AB và AC là bao nhiêu?

   b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.

1

Bài 1: 

a: AB+AC=75-45=30(cm)

b: AB=(30+4):2=17(cm)

=>AC=13cm

\(S=17\cdot13=221\left(cm^2\right)\)

Bài 2: 

a: BC=67-47=20(cm)

b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)

15 tháng 1 2022

bài 2, bài 3, bài 4 đâu bạn? Sao có 1 bài vậy?!

10 tháng 10 2021

AB = sqrt((6 + 3)^2 + (5 - 5)^2) = 9

AC = sqrt((1 + 3)^2 + (0 - 5)^2) = sqrt(41)

BC = sqrt((1 - 6)^2 + (0 - 5)^2) = 5sqrt(2)

Chu vi tam giác ABC:

AB + BC + AC = 9 + 5sqrt(2) + sqrt(41) ~~ 22,474 (đvđd)

Diện tích tam giác ABC: (dùng công thức Hê-rông): 22,5(đvdt)