Tính giá trị nhỏ nhất của biểu thức: A = | x - 2 | + | 5 - x |
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
A=|x-2|+|y+5|-15
Xét thấy: |x-2|+|y+5| > hoặc = 0 với mọi x
=>|x-2|+|y+5|-15 > hoặc = 0-15
A > hoặc = -15
A nhỏ nhất = -15 khi và chỉ khi:
|x-2|+|y+5|=0
=> x-2=0 và y+5=0
x=2 và y=-5
Vậy (x;y)=(2;-5)
Chúc bạn học tốt!
à quên cái dòng ''xét thấy'' là với mọi x và y nha bạn, mk quên ghi đấy!
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(x-\sqrt{x}+\frac{5}{4}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}\)
Ta có : \(x>0\)
\(\Leftrightarrow\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}>\frac{5}{4}\)
=> Amin= \(\frac{5}{4}\)
dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=0\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
a) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)
Dấu '=' xảy ra khi x=2
b) Ta có: \(\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi x=5
Ta sẽ phá dấu giá trị tuyệt đối.
Với \(x\le2\) ta có \(A=2-x+5-x=7-2x\)
Do \(x\le2\) nên \(-2x\ge-4\Rightarrow7-2x\ge7-4=3.\)
Với \(2< x< 5\) ta có \(A=x-2+5-x=3\)
Với \(x\ge5\) ta có \(A=x-2+x-5=2x-7\)
Do \(x\ge5\) nên \(2x\ge10\Rightarrow2x-7\ge3\)
Vậy giá trị nhỏ nhất của A là 3 khi \(2\le x\le5\)
Ta có A=|x-2|+|5-x| lớn hơn hoăc bằng 3
Dấu = xảy ra <=>x-2 và 5-x lớn hơn hoặc bằng 0
=>1<x<6
Vậy MIN A=3<=>1<X<6