Cho tam giác ABC vuông tại A, AH là đường cao, E,F lần lượt là hình chiếu của H trên AB và AC. Chứng minh:
a) \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
b)\(AH^3=BE.CF.BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=BH^2\)
hay \(BE=\dfrac{BH^2}{BA}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{CH^2}{CA}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)
a: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>AB^2/AC^2=BH/CH
b: ΔAHB vuông tại H có HD là đường cao
nên BH^2=BD*BA
=>BD=BH^2/BA
ΔAHC vuông tại H có HE là đường cao
nên CH^2=CE*CA
=>CE=CH^2/CA
BD/CE=BH^2/BA:CH^2/CA
\(=\dfrac{BH^2}{BA}\cdot\dfrac{CA}{CH^2}=\left(\dfrac{BA}{CA}\right)^4\cdot\dfrac{CA}{BA}=\left(\dfrac{BA}{CA}\right)^3\)
a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)
Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)
b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274
a) Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\)
\(AC^2=CH.CB\)
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)
b) Áp dụng hệ thức lượng trong tam giác vuông có:
\(BH^2=BE.BA\)
\(CH^2=CF.CA\)
\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{3600}{36}=100\left(cm\right)\\AH=\sqrt{36\left(100-36\right)}=\sqrt{36\cdot64}=6\cdot8=48\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=80\left(cm\right)\left(pytago\right)\)
\(b,\) Áp dụng HTL trong tam giác ABC,AHB và AHC, ta có
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH^2=AB\cdot BE\\CH^2=AC\cdot CF\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB\cdot AC}{AH}\\BE=\dfrac{BH^2}{AB}\\CF=\dfrac{CH^2}{AC}\end{matrix}\right.\)
\(\Rightarrow BE\cdot CF=\dfrac{\left(BH\cdot CH\right)^2}{AB\cdot AC}=\dfrac{AH^4}{AB\cdot AC}\left(AH^2=BH\cdot HC\right)\\ \Rightarrow BE\cdot CF\cdot BC=\dfrac{AB\cdot AC}{AH}\cdot\dfrac{AH^4}{AB\cdot AC}=AH^3\left(Đpcm\right)\)
Hệ thức lượng: \(AH^2=BH.CH\)
Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)
Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)
Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)
Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)
\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)
\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)
\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)
\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)
\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)
\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
\(\Rightarrow AE.AB=AF.AC\)
b)(\(\dfrac{BE}{CF}\) chứ)
Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c)Áp dụng định lý Thales có:
\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)
\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)
\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)
\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)
\(\Leftrightarrow BC^..BE.BF=AH^3\)
Vậy ....
a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)
Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)
Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)
Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)
Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)
Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)
\(\Rightarrow AH^3=BE.CF.BC\)