Chứng minh rằng : A= 22011969+ 11969220+ 69220119 chia hết cho 102
cảm ơn mọi người nhiều giúp mk với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo ở Câu hỏi của Đặng Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)
n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)
=> 1 trong 3 số trên chia hết cho 2
=> A chia hết cho 2 (2)
Từ (1) => một trong 3 số trên chia hết cho 3
=> A chia hết cho 3 (3)
2 và 3 là 2 số nguyên tố cùng nhau (4)
Từ (2); (3); (4) => A chia hết cho 6 (đpcm)
n3 - n
= n(n2 - 1) = n(n2 - 12)
= n(n - 1)(n + 1)
Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)
=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Tích của chúng chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (Đpcm)
1
abc - cba = ( a x 100 + b x 10 + c ) - ( c x 100 + b x 10 + a ) = a x 99 + b x 10 - c x 99 + b x 10 = a x 99 - c x 99
Vì a x 99 chia hết cho 11 , c x 99 chia hết cho 11 nên abc - cba cũng chia hết cho 11
2
a ) abcdeg = ab x 10000 + cd x 100 + eg = a x 9999 + cd x 99 + ( ab + cd +eg )
Vì a x 9999 chia hết cho 11 , cd x 99 chia hết cho 11 , ab + cd +eg chia hết cho 11 ( theo đề ) nên abcdeg cũng chia hết cho 11
b ) CÂU NÀY MÌNH CHƯA NGHĨ RA NHA
n^3-n=n(n^2-1)=n(n-1)(n+1)
ta thay n-1;n;n+1 la 3 STN lien tiep
ma h cua 3 STN lien tiep luon chia het cho 2 va
Vay...
good luck
Ta có:
\(\left(3n\right)^{100}=3^{100}.n^{100}\)
\(=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
Vậy ....
Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)
Vậy...
~~~~~~~~~~~~~
Cách 1: Cái này là định lý Fermat nhỏ thôi bạn. Tổng quát hơn:
Cho số nguyên dương a và số nguyên tố p. Khi đó \(a^p\equiv a\left[p\right]\)
Ta chứng minh định lý này bằng cách quy nạp theo a:
Với \(a=1\) thì \(1^p\equiv1\left[p\right]\), luôn đúng.
Giả sử khẳng định đúng đến \(a=k\left(k\inℕ^∗\right)\). Khi đó \(k^p\equiv k\left[p\right]\). Ta cần chứng minh khẳng định đúng với \(a=k+1\). Thật vậy, với \(a=k+1\), ta có:
\(\left(k+1\right)^p=k^p+C^1_p.k^{p-1}+C^2_pk^{p-2}...+C^{p-1}_pk^1+1\) (*)
((*) áp dụng khai triển nhị thức Newton, bạn có thể tìm hiểu trên mạng)
(Ở đây kí hiệu \(C^n_m=\dfrac{m!}{n!\left(m-n\right)!}\) với \(m\ge n\) là các số tự nhiên và kí hiệu \(x!=1.2.3...x\))
Ta phát biểu không chứng minh một bổ đề quan trọng sau: Với p là số nguyên tố thì \(C^i_p⋮p\) với mọi \(1\le i\le p-1\)
Do đó vế phải của (*) \(\equiv k^p+1\left[p\right]\). Thế nhưng theo giả thiết quy nạp, có \(k^p\equiv k\left[p\right]\) nên \(k^p+1\equiv k+1\left[p\right]\), suy ra \(\left(k+1\right)^p\equiv k+1\left[p\right]\)
Vậy khẳng định đúng với \(a=k+1\). Theo nguyên lí quy nạp, suy ra điều phải chứng minh. Áp dụng định lý này cho số nguyên tố \(p=7\) là xong.
Cách 2: Đối với những số nhỏ như số 7 thì ta có thể làm bằng pp phân tích đa thức thành nhân tử để cm là được:
\(P=a^7-a\)
\(P=a\left(a^6-a\right)\)
\(P=a\left(a^3-1\right)\left(a^3+1\right)\)
\(P=a\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
Nếu \(a⋮7,a\equiv\pm1\left[7\right]\) thì hiển nhiên \(P⋮7\)
Nếu \(a\equiv\pm2\left[7\right];a\equiv\pm3\left[7\right]\) thì \(\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\), suy ra \(P⋮7\). Vậy \(a^7-a⋮7\)
http://olm.vn/hoi-dap/question/356041.html