Cho tam giác ABC vuông tại A . Các tia phân giác của góc B, góc C cắt nhau tại I. Kẻ IH vuông góc BC.Biết HI=1cm, HB= 2cm HC=3cm.Tính chu vi ( tự vẽ hình , viết giả thiết , kết luận )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tự vẽ hình nhé!
Kẻ \(ID\perp AC,IE\perp AB\). Theo tính chất tia phân giác: \(IE=ID=IH=1\left(cm\right)\)
Ta chứng minh được \(BE=BH=2\left(cm\right),CD=CH=3\left(cm\right)\)
AI là tia phân giác của \(\widehat{A}\) mà \(\widehat{A}=90^o\) nên \(\widehat{IAD}=\widehat{IAE}=45^o\)
Suy ra \(AD=ID=1\left(cm\right)\), \(AE=IE=1\left(cm\right)\). Từ đó, chu vi tam giác ABC là: \(1+2+2+3+3+1=12\left(cm\right)\)
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).